BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 17144876)

  • 1. Signalling mechanisms in skeletal muscle: role in substrate selection and muscle adaptation.
    Hawley JA; Hargreaves M; Zierath JR
    Essays Biochem; 2006; 42():1-12. PubMed ID: 17144876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise signalling to glucose transport in skeletal muscle.
    Richter EA; Nielsen JN; Jørgensen SB; Frøsig C; Birk JB; Wojtaszewski JF
    Proc Nutr Soc; 2004 May; 63(2):211-6. PubMed ID: 15294032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle.
    Benziane B; Burton TJ; Scanlan B; Galuska D; Canny BJ; Chibalin AV; Zierath JR; Stepto NK
    Am J Physiol Endocrinol Metab; 2008 Dec; 295(6):E1427-38. PubMed ID: 18827172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise training-induced improvements in insulin action.
    Hawley JA; Lessard SJ
    Acta Physiol (Oxf); 2008 Jan; 192(1):127-35. PubMed ID: 18171435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+/calmodulin-dependent protein kinase kinase-alpha regulates skeletal muscle glucose uptake independent of AMP-activated protein kinase and Akt activation.
    Witczak CA; Fujii N; Hirshman MF; Goodyear LJ
    Diabetes; 2007 May; 56(5):1403-9. PubMed ID: 17287469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AMP-activated protein kinase: a critical signaling intermediary for exercise-stimulated glucose transport?
    Goodyear LJ
    Exerc Sport Sci Rev; 2000 Jul; 28(3):113-6. PubMed ID: 10916702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific attenuation of protein kinase phosphorylation in muscle with a high mitochondrial content.
    Ljubicic V; Hood DA
    Am J Physiol Endocrinol Metab; 2009 Sep; 297(3):E749-58. PubMed ID: 19549794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMP-activated protein kinase: a key system mediating metabolic responses to exercise.
    Hardie DG
    Med Sci Sports Exerc; 2004 Jan; 36(1):28-34. PubMed ID: 14707764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diphenylene iodonium stimulates glucose uptake in skeletal muscle cells through mitochondrial complex I inhibition and activation of AMP-activated protein kinase.
    Hutchinson DS; Csikasz RI; Yamamoto DL; Shabalina IG; Wikström P; Wilcke M; Bengtsson T
    Cell Signal; 2007 Jul; 19(7):1610-20. PubMed ID: 17391917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signalling to glucose transport in skeletal muscle during exercise.
    Richter EA; Nielsen JN; Jørgensen SB; Frøsig C; Wojtaszewski JF
    Acta Physiol Scand; 2003 Aug; 178(4):329-35. PubMed ID: 12864737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise.
    Winder WW; Taylor EB; Thomson DM
    Med Sci Sports Exerc; 2006 Nov; 38(11):1945-9. PubMed ID: 17095928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of AMP-activated protein kinase and calcineurin on metabolic networks in skeletal muscle.
    Long YC; Zierath JR
    Am J Physiol Endocrinol Metab; 2008 Sep; 295(3):E545-52. PubMed ID: 18544643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diminished contraction-induced intracellular signaling towards mitochondrial biogenesis in aged skeletal muscle.
    Ljubicic V; Hood DA
    Aging Cell; 2009 Aug; 8(4):394-404. PubMed ID: 19416128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction.
    Jensen TE; Rose AJ; Jørgensen SB; Brandt N; Schjerling P; Wojtaszewski JF; Richter EA
    Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1308-17. PubMed ID: 17213473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exercise-induced mitogen-activated protein kinase signalling in skeletal muscle.
    Long YC; Widegren U; Zierath JR
    Proc Nutr Soc; 2004 May; 63(2):227-32. PubMed ID: 15294035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise does not alter subcellular localization, but increases phosphorylation of insulin-signaling proteins in human skeletal muscle.
    Wilson C; Hargreaves M; Howlett KF
    Am J Physiol Endocrinol Metab; 2006 Feb; 290(2):E341-6. PubMed ID: 16188907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Invited review: intracellular signaling in contracting skeletal muscle.
    Sakamoto K; Goodyear LJ
    J Appl Physiol (1985); 2002 Jul; 93(1):369-83. PubMed ID: 12070227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of the activities of AMP-activated protein kinase, protein kinase B, and mammalian target of rapamycin by limiting energy availability with 2-deoxyglucose.
    Jiang W; Zhu Z; Thompson HJ
    Mol Carcinog; 2008 Aug; 47(8):616-28. PubMed ID: 18247380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of adipokines in the control of energy metabolism: focus on adiponectin.
    Lafontan M; Viguerie N
    Curr Opin Pharmacol; 2006 Dec; 6(6):580-5. PubMed ID: 16973420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise-induced phospho-proteins in skeletal muscle.
    Deshmukh AS; Hawley JA; Zierath JR
    Int J Obes (Lond); 2008 Sep; 32 Suppl 4():S18-23. PubMed ID: 18719593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.