These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 17145053)

  • 1. Numerical modelling of biopotential field for detection of breast tumour.
    Ng EY; Ng WK; Sim LS; Rajendra Acharya U
    Comput Biol Med; 2007 Aug; 37(8):1121-32. PubMed ID: 17145053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofield potential simulation as a novel adjunt modality for continuous monitoring of breast lesions: a 3D numerical model.
    Ng EY; Ng WK; Acharya UR
    J Med Eng Technol; 2008; 32(1):40-52. PubMed ID: 18183519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parametric study of the biopotential equation for breast tumour identification using ANOVA and Taguchi method.
    Ng EY; Ng WK
    Med Biol Eng Comput; 2006 Mar; 44(1-2):131-9. PubMed ID: 16929931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mathematical model for breast cancer lesion estimation: electrical impedance technique using TS2000 commercial system.
    Seo JK; Kwon O; Ammari H; Woo EJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1898-906. PubMed ID: 15536891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting early breast tumour by finite element thermal analysis.
    Lin QY; Yang HQ; Xie SS; Wang YH; Ye Z; Chen SQ
    J Med Eng Technol; 2009; 33(4):274-80. PubMed ID: 19384702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An inverse problem solution for measuring the elastic modulus of intact ex vivo breast tissue tumours.
    Samani A; Plewes D
    Phys Med Biol; 2007 Mar; 52(5):1247-60. PubMed ID: 17301452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frictional contact mechanics methods for soft materials: application to tracking breast cancers.
    Chung JH; Rajagopal V; Laursen TA; Nielsen PM; Nash MP
    J Biomech; 2008; 41(1):69-77. PubMed ID: 17727862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of impedance technique for detecting breast carcinoma using a 2-D numerical model of the torso.
    Radai MM; Abboud S; Rosenfeld M
    Ann N Y Acad Sci; 1999 Apr; 873():360-9. PubMed ID: 10372183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries.
    Lazebnik M; Popovic D; McCartney L; Watkins CB; Lindstrom MJ; Harter J; Sewall S; Ogilvie T; Magliocco A; Breslin TM; Temple W; Mew D; Booske JH; Okoniewski M; Hagness SC
    Phys Med Biol; 2007 Oct; 52(20):6093-115. PubMed ID: 17921574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A medical tactile sensing instrument for detecting embedded objects, with specific application for breast examination.
    Hosseini SM; Kashani SM; Najarian S; Panahi F; Naeini SM; Mojra A
    Int J Med Robot; 2010 Mar; 6(1):73-82. PubMed ID: 20013825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive measurement of the electrical bioimpedance of breast tumors.
    Ohmine Y; Morimoto T; Kinouchi Y; Iritani T; Takeuchi M; Monden Y
    Anticancer Res; 2000; 20(3B):1941-6. PubMed ID: 10928131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Temperature Distribution of a Breast With and Without Tumour.
    Sudharsan NM; Ng EY; Teh SL
    Comput Methods Biomech Biomed Engin; 1999; 2(3):187-199. PubMed ID: 11264827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the hyperelastic properties of tissue slices with tumour inclusion.
    O'Hagan JJ; Samani A
    Phys Med Biol; 2008 Dec; 53(24):7087-106. PubMed ID: 19015576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applicability of the single equivalent moving dipole model in an infinite homogeneous medium to identify cardiac electrical sources: a computer simulation study in a realistic anatomic geometry torso model.
    Fukuoka Y; Oostendorp TF; Sherman DA; Armoundas AA
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2436-44. PubMed ID: 17153200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometry-adapted hexahedral meshes improve accuracy of finite-element-method-based EEG source analysis.
    Wolters CH; Anwander A; Berti G; Hartmann U
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1446-53. PubMed ID: 17694865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of stochastic finite element methods to study the sensitivity of ECG forward modeling to organ conductivity.
    Geneser SE; Kirby RM; MacLeod RS
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):31-40. PubMed ID: 18232344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: fixed-focus and antenna-array sensors.
    Hagness SC; Taflove A; Bridges JE
    IEEE Trans Biomed Eng; 1998 Dec; 45(12):1470-9. PubMed ID: 9835195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The volume conductor effects of anisotropic muscle on body surface potentials using an eccentric spheres model.
    Schmidt JA; Pilkington TC
    IEEE Trans Biomed Eng; 1991 Mar; 38(3):300-3. PubMed ID: 2066145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in the 3-D forward-backward time-stepping (FBTS) inverse scattering technique for breast cancer detection.
    Johnson JE; Takenaka T; Ping KA; Honda S; Tanaka T
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2232-43. PubMed ID: 19457739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced integrated technique in breast cancer thermography.
    Ng EY; Kee EC
    J Med Eng Technol; 2008; 32(2):103-14. PubMed ID: 17852648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.