These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 17145193)
41. The Heliothis virescens cadherin protein expressed in Drosophila S2 cells functions as a receptor for Bacillus thuringiensis Cry1A but not Cry1Fa toxins. Jurat-Fuentes JL; Adang MJ Biochemistry; 2006 Aug; 45(32):9688-95. PubMed ID: 16893170 [TBL] [Abstract][Full Text] [Related]
42. Toward the physiological basis for increased Agrotis ipsilon multiple nucleopolyhedrovirus infection following feeding of Agrotis ipsilon larvae on transgenic corn expressing Cry1Fa2. Schmidt NR; Haywood JM; Bonning BC J Invertebr Pathol; 2009 Oct; 102(2):141-8. PubMed ID: 19651136 [TBL] [Abstract][Full Text] [Related]
43. Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants. Ruiz de Escudero I; Estela A; Escriche B; Caballero P Appl Environ Microbiol; 2007 Jan; 73(1):337-40. PubMed ID: 17085712 [TBL] [Abstract][Full Text] [Related]
44. Bacillus thuringiensis delta-endotoxin Cry1Ac domain III enhances activity against Heliothis virescens in some, but not all Cry1-Cry1Ac hybrids. Karlova R; Weemen-Hendriks M; Naimov S; Ceron J; Dukiandjiev S; de Maagd RA J Invertebr Pathol; 2005 Feb; 88(2):169-72. PubMed ID: 15766934 [TBL] [Abstract][Full Text] [Related]
45. Characterization and transcriptional analyses of cDNAs encoding three trypsin- and chymotrypsin-like proteinases in Cry1Ab-susceptible and Cry1Ab-resistant strains of sugarcane borer, Diatraea saccharalis. Yang Y; Zhu YC; Ottea J; Husseneder C; Leonard BR; Abel C; Luttrell R; Huang F Insect Sci; 2013 Aug; 20(4):485-96. PubMed ID: 23955944 [TBL] [Abstract][Full Text] [Related]
46. Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CryIA(c) protoxin. Oppert B; Kramer KJ; Johnson D; Upton SJ; Mcgaughey WH Insect Biochem Mol Biol; 1996 Jun; 26(6):571-83. PubMed ID: 8969468 [TBL] [Abstract][Full Text] [Related]
47. Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of the cabbage looper, Trichoplusia ni. Wang P; Zhao JZ; Rodrigo-Simón A; Kain W; Janmaat AF; Shelton AM; Ferré J; Myers J Appl Environ Microbiol; 2007 Feb; 73(4):1199-207. PubMed ID: 17189446 [TBL] [Abstract][Full Text] [Related]
48. Toxin stability improvement and toxicity increase against dipteran and lepidopteran larvae of Bacillus thuringiensis crystal protein Cry2Aa. Elleuch J; Jaoua S; Ginibre C; Chandre F; Tounsi S; Zghal RZ Pest Manag Sci; 2016 Dec; 72(12):2240-2246. PubMed ID: 26910489 [TBL] [Abstract][Full Text] [Related]
49. Molecular characterisation of Bacillus thuringiensis strain MEB4 highly toxic to the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Abdelmalek N; Sellami S; Ben Kridis A; Tounsi S; Rouis S Pest Manag Sci; 2016 May; 72(5):913-21. PubMed ID: 26103535 [TBL] [Abstract][Full Text] [Related]
50. Resistance to Bacillus thuringiensis by the Indian meal moth, Plodia interpunctella: comparison of midgut proteinases from susceptible and resistant larvae. Johnson DE; Brookhart GL; Kramer KJ; Barnett BD; McGaughey WH J Invertebr Pathol; 1990 Mar; 55(2):235-44. PubMed ID: 2181026 [TBL] [Abstract][Full Text] [Related]
51. Resistance to Bacillus thuringiensis CryIA delta-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Lee MK; Rajamohan F; Gould F; Dean DH Appl Environ Microbiol; 1995 Nov; 61(11):3836-42. PubMed ID: 8526494 [TBL] [Abstract][Full Text] [Related]
52. A global approach to resistance monitoring. Sivasupramaniam S; Head GP; English L; Li YJ; Vaughn TT J Invertebr Pathol; 2007 Jul; 95(3):224-6. PubMed ID: 17467005 [TBL] [Abstract][Full Text] [Related]
53. Protease activities in the midgut of Western corn rootworm (Diabrotica virgifera virgifera LeConte). Kaiser-Alexnat R J Invertebr Pathol; 2009 Mar; 100(3):169-74. PubMed ID: 19320044 [TBL] [Abstract][Full Text] [Related]
54. Characterization of cDNAs encoding serine proteases and their transcriptional responses to Cry1Ab protoxin in the gut of Ostrinia nubilalis larvae. Yao J; Buschman LL; Oppert B; Khajuria C; Zhu KY PLoS One; 2012; 7(8):e44090. PubMed ID: 22952884 [TBL] [Abstract][Full Text] [Related]
55. Is resistance to Bacillus thuringiensis endotoxin Cry1Ac associated with a change in the behavior of light brown apple moth larvae (Lepidoptera: Tortricidae)? Harris MO; Markwick N; Sandanayake M J Econ Entomol; 2006 Apr; 99(2):508-18. PubMed ID: 16686154 [TBL] [Abstract][Full Text] [Related]
56. Monitoring Bacillus thuringiensis-susceptibility in insect pests that occur in large geographies: how to get the best information when two countries are involved. Blanco CA; Perera OP; Boykin D; Abel C; Gore J; Matten SR; Ramírez-Sagahon JC; Terán-Vargas AP J Invertebr Pathol; 2007 Jul; 95(3):201-7. PubMed ID: 17499760 [TBL] [Abstract][Full Text] [Related]
58. Resistance to bacillus thuringiensis Cry1Ac toxin in three strains of heliothis virescens: proteolytic and SEM study of the larval midgut. Forcada C; Alcacer E; Garcera MD; Tato A; Martinez R Arch Insect Biochem Physiol; 1999 Sep; 42(1):51-63. PubMed ID: 10467056 [TBL] [Abstract][Full Text] [Related]
59. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis. Jurat-Fuentes JL; Karumbaiah L; Jakka SR; Ning C; Liu C; Wu K; Jackson J; Gould F; Blanco C; Portilla M; Perera O; Adang M PLoS One; 2011 Mar; 6(3):e17606. PubMed ID: 21390253 [TBL] [Abstract][Full Text] [Related]
60. Activity of Bacillus thuringiensis delta-endotoxins against codling moth (Cydia pomonella L.) larvae. Boncheva R; Dukiandjiev S; Minkov I; de Maagd RA; Naimov S J Invertebr Pathol; 2006 Jun; 92(2):96-9. PubMed ID: 16530218 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]