These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 17145427)

  • 121. Effects of Iliac Stenosis on Abdominal Aortic Aneurysm Formation in Mice and Humans.
    Sangha GS; Busch A; Acuna A; Berman AG; Phillips EH; Trenner M; Eckstein HH; Maegdefessel L; Goergen CJ
    J Vasc Res; 2019; 56(5):217-229. PubMed ID: 31272099
    [TBL] [Abstract][Full Text] [Related]  

  • 122. Significant CT-angiographic evidence of coexisting abdominal aortoiliac aneurysms with simple renal cysts and abdominal wall hernias.
    Gindera LB; Donas KP; Torsello G; Bisdas T; Stavroulakis K
    Minerva Chir; 2015 Dec; 70(6):409-16. PubMed ID: 25916192
    [TBL] [Abstract][Full Text] [Related]  

  • 123. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis.
    Taylor CA; Hughes TJ; Zarins CK
    Ann Biomed Eng; 1998; 26(6):975-87. PubMed ID: 9846936
    [TBL] [Abstract][Full Text] [Related]  

  • 124. A comparison of hemodynamic metrics and intraluminal thrombus burden in a common iliac artery aneurysm.
    Kelsey LJ; Powell JT; Norman PE; Miller K; Doyle BJ
    Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27509188
    [TBL] [Abstract][Full Text] [Related]  

  • 125. Atherosclerotic enlargement of the human abdominal aorta.
    Zarins CK; Xu C; Glagov S
    Atherosclerosis; 2001 Mar; 155(1):157-64. PubMed ID: 11223437
    [TBL] [Abstract][Full Text] [Related]  

  • 126. Influence of wall compliance on hemodynamics in models of abdominal aortic aneurysm.
    Gaillard E; Bergeron P; Deplano V
    J Endovasc Ther; 2007 Aug; 14(4):593-9. PubMed ID: 17696637
    [TBL] [Abstract][Full Text] [Related]  

  • 127. A comparison of the measured and predicted flowfield in a patient-specific model of an abdominal aortic aneurysm.
    O'Rourke MJ; McCullough JP
    Proc Inst Mech Eng H; 2008 Jul; 222(5):737-50. PubMed ID: 18756691
    [TBL] [Abstract][Full Text] [Related]  

  • 128. Gallstones in spinal cord injury (SCI): a late medical complication?
    Rotter KP; Larraín CG
    Spinal Cord; 2003 Feb; 41(2):105-8. PubMed ID: 12595873
    [TBL] [Abstract][Full Text] [Related]  

  • 129. The value of screening in siblings of patients with abdominal aortic aneurysm.
    Frydman G; Walker PJ; Summers K; West M; Xu D; Lightfoot T; Codd C; Dique T; Nataatmadja M
    Eur J Vasc Endovasc Surg; 2003 Oct; 26(4):396-400. PubMed ID: 14512002
    [TBL] [Abstract][Full Text] [Related]  

  • 130. Rapid and extensive arterial adaptations after spinal cord injury.
    de Groot PC; Bleeker MW; van Kuppevelt DH; van der Woude LH; Hopman MT
    Arch Phys Med Rehabil; 2006 May; 87(5):688-96. PubMed ID: 16635632
    [TBL] [Abstract][Full Text] [Related]  

  • 131. Measuring the abdominal aorta with ultrasonography and computed tomography - difference and variability.
    Wanhainen A; Bergqvist D; Björck M
    Eur J Vasc Endovasc Surg; 2002 Nov; 24(5):428-34. PubMed ID: 12435343
    [TBL] [Abstract][Full Text] [Related]  

  • 132. Time course of arterial vascular adaptations to inactivity and paralyses in humans.
    De Groot PC; Van Kuppevelt DH; Pons C; Snoek G; Van Der Woude LH; Hopman MT
    Med Sci Sports Exerc; 2003 Dec; 35(12):1977-85. PubMed ID: 14652491
    [TBL] [Abstract][Full Text] [Related]  

  • 133. SEX AND VASCULAR BIOMECHANICS: A HYPOTHESIS FOR THE MECHANISM UNDERLYING DIFFERENCES IN THE PREVALENCE OF ABDOMINAL AORTIC ANEURYSMS IN MEN AND WOMEN.
    Taylor WR; Iffrig E; Veneziani A; Oshinski JN; Smolensky A
    Trans Am Clin Climatol Assoc; 2016; 127():148-161. PubMed ID: 28066050
    [TBL] [Abstract][Full Text] [Related]  

  • 134. Intra-abdominal fat and metabolic syndrome are associated with larger infrarenal aortic diameters in patients with clinically evident arterial disease.
    Gorter PM; Visseren FL; Moll FL; van der Graaf Y;
    J Vasc Surg; 2008 Jul; 48(1):114-20. PubMed ID: 18440755
    [TBL] [Abstract][Full Text] [Related]  

  • 135. Pulse wave velocity for assessment of arterial stiffness among people with spinal cord injury: a pilot study.
    Miyatani M; Masani K; Oh PI; Miyachi M; Popovic MR; Craven BC
    J Spinal Cord Med; 2009; 32(1):72-8. PubMed ID: 19264052
    [TBL] [Abstract][Full Text] [Related]  

  • 136. Magnetic resonance morphological, chemical shift and flow imaging in peripheral vascular disease.
    Mohiaddin RH; Sampson C; Firmin DN; Longmore DB
    Eur J Vasc Surg; 1991 Aug; 5(4):383-96. PubMed ID: 1915903
    [TBL] [Abstract][Full Text] [Related]  

  • 137. A FSI computational framework for vascular physiopathology: A novel flow-tissue multiscale strategy.
    Bianchi D; Monaldo E; Gizzi A; Marino M; Filippi S; Vairo G
    Med Eng Phys; 2017 Sep; 47():25-37. PubMed ID: 28690045
    [TBL] [Abstract][Full Text] [Related]  

  • 138. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis.
    Moore JE; Ku DN; Zarins CK; Glagov S
    J Biomech Eng; 1992 Aug; 114(3):391-7. PubMed ID: 1295493
    [TBL] [Abstract][Full Text] [Related]  

  • 139. Reduced arterial circulation to the legs in spinal cord injury as a cause of skin breakdown lesions.
    Deitrick G; Charalel J; Bauman W; Tuckman J
    Angiology; 2007; 58(2):175-84. PubMed ID: 17495266
    [TBL] [Abstract][Full Text] [Related]  

  • 140. Prevalence of abnormal systemic hemodynamics in veterans with and without spinal cord injury.
    Wecht JM; Weir JP; Galea M; Martinez S; Bauman WA
    Arch Phys Med Rehabil; 2015 Jun; 96(6):1071-9. PubMed ID: 25660005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.