BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

551 related articles for article (PubMed ID: 17145508)

  • 1. Spatiotemporal asymmetry of associative synaptic plasticity in fear conditioning pathways.
    Shin RM; Tsvetkov E; Bolshakov VY
    Neuron; 2006 Dec; 52(5):883-96. PubMed ID: 17145508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala.
    Tsvetkov E; Carlezon WA; Benes FM; Kandel ER; Bolshakov VY
    Neuron; 2002 Apr; 34(2):289-300. PubMed ID: 11970870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fear memories induce a switch in stimulus response and signaling mechanisms for long-term potentiation in the lateral amygdala.
    Schroeder BW; Shinnick-Gallagher P
    Eur J Neurosci; 2004 Jul; 20(2):549-56. PubMed ID: 15233764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postsynaptic BDNF signalling regulates long-term potentiation at thalamo-amygdala afferents.
    Meis S; Endres T; Lessmann V
    J Physiol; 2012 Jan; 590(1):193-208. PubMed ID: 22083603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate uptake determines pathway specificity of long-term potentiation in the neural circuitry of fear conditioning.
    Tsvetkov E; Shin RM; Bolshakov VY
    Neuron; 2004 Jan; 41(1):139-51. PubMed ID: 14715141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible plasticity of fear memory-encoding amygdala synaptic circuits even after fear memory consolidation.
    Hong I; Kim J; Lee J; Park S; Song B; Kim J; An B; Park K; Lee HW; Lee S; Kim H; Park SH; Eom KD; Lee S; Choi S
    PLoS One; 2011; 6(9):e24260. PubMed ID: 21949700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. stathmin, a gene enriched in the amygdala, controls both learned and innate fear.
    Shumyatsky GP; Malleret G; Shin RM; Takizawa S; Tully K; Tsvetkov E; Zakharenko SS; Joseph J; Vronskaya S; Yin D; Schubart UK; Kandel ER; Bolshakov VY
    Cell; 2005 Nov; 123(4):697-709. PubMed ID: 16286011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterosynaptic long-term potentiation of inhibitory interneurons in the lateral amygdala.
    Bauer EP; LeDoux JE
    J Neurosci; 2004 Oct; 24(43):9507-12. PubMed ID: 15509737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term potentiation at excitatory synaptic inputs to the intercalated cell masses of the amygdala.
    Huang CC; Chen CC; Liang YC; Hsu KS
    Int J Neuropsychopharmacol; 2014 Aug; 17(8):1233-42. PubMed ID: 24556032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term potentiation in freely moving rats reveals asymmetries in thalamic and cortical inputs to the lateral amygdala.
    Doyère V; Schafe GE; Sigurdsson T; LeDoux JE
    Eur J Neurosci; 2003 Jun; 17(12):2703-15. PubMed ID: 12823477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptically released zinc gates long-term potentiation in fear conditioning pathways.
    Kodirov SA; Takizawa S; Joseph J; Kandel ER; Shumyatsky GP; Bolshakov VY
    Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15218-23. PubMed ID: 17005717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forebrain NR2B overexpression enhancing fear acquisition and long-term potentiation in the lateral amygdala.
    Duan Y; Zhou S; Ma J; Yin P; Cao X
    Eur J Neurosci; 2015 Sep; 42(5):2214-23. PubMed ID: 26118841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide signaling exerts bidirectional effects on plasticity inductions in amygdala.
    Shin RM; Higuchi M; Suhara T
    PLoS One; 2013; 8(9):e74668. PubMed ID: 24086360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fear conditioning occludes late-phase long-term potentiation at thalamic input synapses onto the lateral amygdala in rat brain slices.
    Hong I; Kim J; Song B; Park K; Shin K; Eom KD; Han PL; Lee S; Choi S
    Neurosci Lett; 2012 Jan; 506(1):121-5. PubMed ID: 22079527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coactivation of thalamic and cortical pathways induces input timing-dependent plasticity in amygdala.
    Cho JH; Bayazitov IT; Meloni EG; Myers KM; Carlezon WA; Zakharenko SS; Bolshakov VY
    Nat Neurosci; 2011 Dec; 15(1):113-22. PubMed ID: 22158512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses.
    Royer S; Paré D
    Neuroscience; 2002; 115(2):455-62. PubMed ID: 12421611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergent but temporally separated inputs to lateral amygdala neurons from the auditory thalamus and auditory cortex use different postsynaptic receptors: in vivo intracellular and extracellular recordings in fear conditioning pathways.
    Li XF; Stutzmann GE; LeDoux JE
    Learn Mem; 1996; 3(2-3):229-42. PubMed ID: 10456093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses.
    Tully K; Li Y; Tsvetkov E; Bolshakov VY
    Proc Natl Acad Sci U S A; 2007 Aug; 104(35):14146-50. PubMed ID: 17709755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The NO-cGMP-PKG signaling pathway regulates synaptic plasticity and fear memory consolidation in the lateral amygdala via activation of ERK/MAP kinase.
    Ota KT; Pierre VJ; Ploski JE; Queen K; Schafe GE
    Learn Mem; 2008 Oct; 15(10):792-805. PubMed ID: 18832566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala.
    Mahanty NK; Sah P
    Nature; 1998 Aug; 394(6694):683-7. PubMed ID: 9716132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.