BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17145670)

  • 1. Optimisation of solute transport in dialysers using a three-dimensional finite volume model.
    Eloot S; Vierendeels J; Verdonck P
    Comput Methods Biomech Biomed Engin; 2006 Dec; 9(6):363-70. PubMed ID: 17145670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Middle molecule removal in low-flux polysulfone dialyzers: impact of flows and surface area on whole-body and dialyzer clearances.
    Eloot S; de Vos JY; de Vos F; Hombrouckx R; Verdonck P
    Hemodial Int; 2005 Oct; 9(4):399-408. PubMed ID: 16219061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a reduced inner diameter of hollow fibers in hemodialyzers.
    Ronco C; Brendolan A; Lupi A; Metry G; Levin NW
    Kidney Int; 2000 Aug; 58(2):809-17. PubMed ID: 10916106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of convective transport on dialyzer clearance.
    Galach M; Ciechanowska A; Sabalińska S; Waniewski J; Wójcicki J; Weryńskis A
    J Artif Organs; 2003; 6(1):42-8. PubMed ID: 14598124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-solute and middle-molecule clearances during continuous flow peritoneal dialysis.
    Leypoldt JK; Burkart JM
    Adv Perit Dial; 2002; 18():26-31. PubMed ID: 12402582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulse push/pull hemodialysis: in vitro study on new dialysis modality with higher convective efficiency.
    Lee K; Lee SR; Mun CH; Min BG
    Artif Organs; 2008 May; 32(5):406-11. PubMed ID: 18471170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of dialysate flow configurations in continuous renal replacement therapy on solute removal: computational modeling.
    Kim JC; Cruz D; Garzotto F; Kaushik M; Teixeria C; Baldwin M; Baldwin I; Nalesso F; Kim JH; Kang E; Kim HC; Ronco C
    Blood Purif; 2013; 35(1-3):106-11. PubMed ID: 23343554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dialyzer clearances and mass transfer-area coefficients for small solutes at low dialysate flow rates.
    Leypoldt JK; Kamerath CD; Gilson JF; Friederichs G
    ASAIO J; 2006; 52(4):404-9. PubMed ID: 16883120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow distribution analysis by helical scanning in polysulfone hemodialyzers: effects of fiber structure and design on flow patterns and solute clearances.
    Ronco C; Levin N; Brendolan A; Nalesso F; Cruz D; Ocampo C; Kuang D; Bonello M; De Cal M; Corradi V; Ricci Z
    Hemodial Int; 2006 Oct; 10(4):380-8. PubMed ID: 17014516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of packing density of hollow fibers on solute removal performances of dialyzers.
    Yamashita AC; Fujita R; Tomisawa N; Jinbo Y; Yamamura M
    Hemodial Int; 2009 Oct; 13 Suppl 1():S2-7. PubMed ID: 19775420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemodiafiltration--a new treatment option for hyperphosphatemia in hemodialysis patients.
    Zehnder C; Gutzwiller JP; Renggli K
    Clin Nephrol; 1999 Sep; 52(3):152-9. PubMed ID: 10499310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The consequences of physiological resistances on metabolite removal from the patient-artifical kidney system.
    Popovich RP; Hlavinka DJ; Bomar JB; Moncrief JW; Decherd JF
    Trans Am Soc Artif Intern Organs; 1975; 21():108-16. PubMed ID: 1145983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in solute removal by two high-flux membranes of nominally similar synthetic polymers.
    Ouseph R; Hutchison CA; Ward RA
    Nephrol Dial Transplant; 2008 May; 23(5):1704-12. PubMed ID: 18156455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation of small-solute and middle-molecule removal during short daily and long thrice-weekly hemodialysis.
    Goldfarb-Rumyantzev AS; Cheung AK; Leypoldt JK
    Am J Kidney Dis; 2002 Dec; 40(6):1211-8. PubMed ID: 12460040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Quantifying dialysis efficiency for middle molecules in haemodialysis and in convective and mixed techniques].
    Casino FG; Lopez T
    G Ital Nefrol; 2008; 25(1):66-75. PubMed ID: 18264920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dialyzer fiber bundle volume and kinetics of solute removal in continuous venovenous hemodialysis.
    Liangos O; Sakiewicz PG; Kanagasundaram NS; Hammel J; Pajouh M; Seifert T; Paganini EP
    Am J Kidney Dis; 2002 May; 39(5):1047-53. PubMed ID: 11979349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood and dialysate flow distributions in hollow-fiber hemodialyzers analyzed by computerized helical scanning technique.
    Ronco C; Brendolan A; Crepaldi C; Rodighiero M; Scabardi M
    J Am Soc Nephrol; 2002 Jan; 13 Suppl 1():S53-61. PubMed ID: 11792763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute effect of haemodialysis on arterial stiffness: membrane bioincompatibility?
    Mourad A; Carney S; Gillies A; Jones B; Nanra R; Trevillian P
    Nephrol Dial Transplant; 2004 Nov; 19(11):2797-802. PubMed ID: 15340092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of standard high-flux polysulfone versus novel high-flux polysulfone dialysis membranes on inflammatory markers: a randomized, single-blinded, controlled clinical trial.
    Kerr PG; Sutherland WH; de Jong S; Vaithalingham I; Williams SM; Walker RJ
    Am J Kidney Dis; 2007 Apr; 49(4):533-9. PubMed ID: 17386321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing dialysate flow rate increases dialyzer urea clearance and dialysis efficiency: an in vivo study.
    Azar AT
    Saudi J Kidney Dis Transpl; 2009 Nov; 20(6):1023-9. PubMed ID: 19861865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.