These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 17145693)

  • 1. Addressing metabolic activation as an integral component of drug design.
    Doss GA; Baillie TA
    Drug Metab Rev; 2006; 38(4):641-9. PubMed ID: 17145693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimising the potential for metabolic activation in drug discovery.
    Kalgutkar AS; Soglia JR
    Expert Opin Drug Metab Toxicol; 2005 Jun; 1(1):91-142. PubMed ID: 16922655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting reactive drug metabolites for reducing the potential for drug toxicity.
    Grillo MP
    Expert Opin Drug Metab Toxicol; 2015; 11(8):1281-302. PubMed ID: 26005795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation and bioactivation reactions of alicyclic amines in drug molecules.
    Bolleddula J; DeMent K; Driscoll JP; Worboys P; Brassil PJ; Bourdet DL
    Drug Metab Rev; 2014 Aug; 46(3):379-419. PubMed ID: 24909234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro screening techniques for reactive metabolites for minimizing bioactivation potential in drug discovery.
    Prakash C; Sharma R; Gleave M; Nedderman A
    Curr Drug Metab; 2008 Nov; 9(9):952-64. PubMed ID: 18991592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug-protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development.
    Evans DC; Watt AP; Nicoll-Griffith DA; Baillie TA
    Chem Res Toxicol; 2004 Jan; 17(1):3-16. PubMed ID: 14727914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro bioactivation of dihydrobenzoxathiin selective estrogen receptor modulators by cytochrome P450 3A4 in human liver microsomes: formation of reactive iminium and quinone type metabolites.
    Zhang Z; Chen Q; Li Y; Doss GA; Dean BJ; Ngui JS; Silva Elipe M; Kim S; Wu JY; Dininno F; Hammond ML; Stearns RA; Evans DC; Baillie TA; Tang W
    Chem Res Toxicol; 2005 Apr; 18(4):675-85. PubMed ID: 15833027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of in vivo potential for metabolic activation of drugs into chemically reactive intermediate: correlation of in vitro and in vivo generation of reactive intermediates and in vitro glutathione conjugate formation in rats and humans.
    Masubuchi N; Makino C; Murayama N
    Chem Res Toxicol; 2007 Mar; 20(3):455-64. PubMed ID: 17309281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies and chemical design approaches to reduce the potential for formation of reactive metabolic species.
    Argikar UA; Mangold JB; Harriman SP
    Curr Top Med Chem; 2011; 11(4):419-49. PubMed ID: 21320068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimizing the potential for metabolic activation as an integral part of drug design.
    Evans DC; Baillie TA
    Curr Opin Drug Discov Devel; 2005 Jan; 8(1):44-50. PubMed ID: 15679171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative assessment of reactive metabolite formation using 35S-labeled glutathione.
    Takakusa H; Masumoto H; Makino C; Okazaki O; Sudo K
    Drug Metab Pharmacokinet; 2009; 24(1):100-7. PubMed ID: 19252339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practical approaches to resolving reactive metabolite liabilities in early discovery.
    Dalvie D; Kalgutkar AS; Chen W
    Drug Metab Rev; 2015 Feb; 47(1):56-70. PubMed ID: 25410913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Managing the liabilities arising from structural alerts: a safe philosophy for medicinal chemists.
    Edwards PJ; Sturino C
    Curr Med Chem; 2011; 18(20):3116-35. PubMed ID: 21651480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Addressing the metabolic activation potential of new leads in drug discovery: a case study using ion trap mass spectrometry and tritium labeling techniques.
    Samuel K; Yin W; Stearns RA; Tang YS; Chaudhary AG; Jewell JP; Lanza T; Lin LS; Hagmann WK; Evans DC; Kumar S
    J Mass Spectrom; 2003 Feb; 38(2):211-21. PubMed ID: 12577288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative high-throughput trapping assay as a measurement of potential for bioactivation.
    Meneses-Lorente G; Sakatis MZ; Schulz-Utermoehl T; De Nardi C; Watt AP
    Anal Biochem; 2006 Apr; 351(2):266-72. PubMed ID: 16473319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactivation of drugs: risk and drug design.
    Walsh JS; Miwa GT
    Annu Rev Pharmacol Toxicol; 2011; 51():145-67. PubMed ID: 21210745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic activation in drug-induced liver injury.
    Leung L; Kalgutkar AS; Obach RS
    Drug Metab Rev; 2012 Feb; 44(1):18-33. PubMed ID: 21939431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactivation of isothiazoles: minimizing the risk of potential toxicity in drug discovery.
    Teffera Y; Choquette D; Liu J; Colletti AE; Hollis LS; Lin MH; Zhao Z
    Chem Res Toxicol; 2010 Nov; 23(11):1743-52. PubMed ID: 20825217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conventional and novel approaches in generating and characterization of reactive intermediates from drugs/drug candidates.
    Orhan H; Vermeulen NP
    Curr Drug Metab; 2011 May; 12(4):383-94. PubMed ID: 21395525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural alerts, reactive metabolites, and protein covalent binding: how reliable are these attributes as predictors of drug toxicity?
    Kalgutkar AS; Didiuk MT
    Chem Biodivers; 2009 Nov; 6(11):2115-37. PubMed ID: 19937848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.