These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17145961)

  • 21. Sequence of centromere separation: differential replication of pericentric heterochromatin in multicentric chromosomes.
    Vig BK; Broccoli D
    Chromosoma; 1988; 96(4):311-7. PubMed ID: 3383702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decondensation of pericentric heterochromatin alters the sequence of centromere separation in mouse cells.
    Vig BK; Willcourt M
    Chromosoma; 1998 Dec; 107(6-7):417-23. PubMed ID: 9914373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific alpha-satellite DNA sequences.
    O'Keefe RT; Henderson SC; Spector DL
    J Cell Biol; 1992 Mar; 116(5):1095-110. PubMed ID: 1740468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bleomycin-induced γH2AX foci map preferentially to replicating domains in CHO9 interphase nuclei.
    Liddle P; Lafon-Hughes L; Di Tomaso MV; Reyes-Ábalos AL; Jara J; Cerda M; Härtel S; Folle GA
    Chromosome Res; 2014 Dec; 22(4):463-81. PubMed ID: 25035135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The histone variant composition of centromeres is controlled by the pericentric heterochromatin state during the cell cycle.
    Boyarchuk E; Filipescu D; Vassias I; Cantaloube S; Almouzni G
    J Cell Sci; 2014 Aug; 127(Pt 15):3347-59. PubMed ID: 24906798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional architecture of tandem repeats in chicken interphase nucleus.
    Maslova A; Zlotina A; Kosyakova N; Sidorova M; Krasikova A
    Chromosome Res; 2015 Sep; 23(3):625-39. PubMed ID: 26316311
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separation vs. replication of inactive and active centromeres in neoplastic cells.
    Garcia-Orad A; Vig BK; Aucoin D
    Cancer Genet Cytogenet; 2000 Jul; 120(1):18-24. PubMed ID: 10913672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Centromere identity in Drosophila is not determined in vivo by replication timing.
    Sullivan B; Karpen G
    J Cell Biol; 2001 Aug; 154(4):683-90. PubMed ID: 11514585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hsk1-Dfp1 is required for heterochromatin-mediated cohesion at centromeres.
    Bailis JM; Bernard P; Antonelli R; Allshire RC; Forsburg SL
    Nat Cell Biol; 2003 Dec; 5(12):1111-6. PubMed ID: 14625560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A portable BRCA1-HAC (human artificial chromosome) module for analysis of BRCA1 tumor suppressor function.
    Kononenko AV; Bansal R; Lee NC; Grimes BR; Masumoto H; Earnshaw WC; Larionov V; Kouprina N
    Nucleic Acids Res; 2014 Dec; 42(21):e164. PubMed ID: 25260588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Stability of spatial interactions between chromocenters and pre-kinetochores in the interphase murine cells].
    Barsukova AS; Artemenko EG; Kalaĭdzidis AL; Zatsepina OV
    Tsitologiia; 2001; 43(1):46-51. PubMed ID: 11392813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pericentric heterochromatin: dynamic organization during early development in mammals.
    Probst AV; Almouzni G
    Differentiation; 2008 Jan; 76(1):15-23. PubMed ID: 17825083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial distribution patterns of interphase centromeres during retinoic acid-induced differentiation of promyelocytic leukemia cells.
    Beil M; Dürschmied D; Paschke S; Schreiner B; Nolte U; Bruel A; Irinopoulou T
    Cytometry; 2002 Apr; 47(4):217-25. PubMed ID: 11933011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases.
    Taddei A; Maison C; Roche D; Almouzni G
    Nat Cell Biol; 2001 Feb; 3(2):114-20. PubMed ID: 11175742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Satellite 2 methylation patterns in normal and ICF syndrome cells and association of hypomethylation with advanced replication.
    Hassan KM; Norwood T; Gimelli G; Gartler SM; Hansen RS
    Hum Genet; 2001 Oct; 109(4):452-62. PubMed ID: 11702227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular analysis of holocentric centromeres of Luzula species.
    Haizel T; Lim YK; Leitch AR; Moore G
    Cytogenet Genome Res; 2005; 109(1-3):134-43. PubMed ID: 15753569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bloom syndrome cells undergo p53-dependent apoptosis and delayed assembly of BRCA1 and NBS1 repair complexes at stalled replication forks.
    Davalos AR; Campisi J
    J Cell Biol; 2003 Sep; 162(7):1197-209. PubMed ID: 14517203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BRCA1 and BRCA2 protect against oxidative DNA damage converted into double-strand breaks during DNA replication.
    Fridlich R; Annamalai D; Roy R; Bernheim G; Powell SN
    DNA Repair (Amst); 2015 Jun; 30():11-20. PubMed ID: 25836596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of replication foci and nuclear matrix during S phase in Allium cepa L. cells.
    Samaniego R; de la Torre C; Moreno Díaz de la Espina S
    Planta; 2002 Jun; 215(2):195-204. PubMed ID: 12029468
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function.
    Bouzinba-Segard H; Guais A; Francastel C
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8709-14. PubMed ID: 16731634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.