These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1714597)

  • 1. Morphology of a sensory neuron in Drosophila is abnormal in memory mutants and changes during aging.
    Corfas G; Dudai Y
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):7252-6. PubMed ID: 1714597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic plasticity in Drosophila memory and hyperexcitable mutants: role of cAMP cascade.
    Zhong Y; Budnik V; Wu CF
    J Neurosci; 1992 Feb; 12(2):644-51. PubMed ID: 1371316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation and fatigue of a mechanosensory neuron in wild-type Drosophila and in memory mutants.
    Corfas G; Dudai Y
    J Neurosci; 1990 Feb; 10(2):491-9. PubMed ID: 2154560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of cAMP cascade in synaptic stability and plasticity: ultrastructural and physiological analyses of individual synaptic boutons in Drosophila memory mutants.
    Renger JJ; Ueda A; Atwood HL; Govind CK; Wu CF
    J Neurosci; 2000 Jun; 20(11):3980-92. PubMed ID: 10818133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Larval multidendrite neurons survive metamorphosis and participate in the formation of imaginal sensory axonal pathways in the notum of Drosophila.
    Usui-Ishihara A; Simpson P; Usui K
    Dev Biol; 2000 Sep; 225(2):357-69. PubMed ID: 10985855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuron differentiation and axon growth in the developing wing of Drosophila melanogaster.
    Murray MA; Schubiger M; Palka J
    Dev Biol; 1984 Aug; 104(2):259-73. PubMed ID: 6204894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced growth cone motility in cultured neurons from Drosophila memory mutants with a defective cAMP cascade.
    Kim YT; Wu CF
    J Neurosci; 1996 Sep; 16(18):5593-602. PubMed ID: 8795615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations.
    Ueda A; Wu CF
    J Neurogenet; 2012 Mar; 26(1):64-81. PubMed ID: 22380612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Drosophila wing sensory neurons in mutants with missing or modified cell surface molecules.
    Whitlock KE
    Development; 1993 Apr; 117(4):1251-60. PubMed ID: 8404529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensory innervation of the rat kidney and ureter as revealed by the anterograde transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) from dorsal root ganglia.
    Marfurt CF; Echtenkamp SF
    J Comp Neurol; 1991 Sep; 311(3):389-404. PubMed ID: 1720146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in frequency coding and activity dependence of excitability in cultured neurons of Drosophila memory mutants.
    Zhao ML; Wu CF
    J Neurosci; 1997 Mar; 17(6):2187-99. PubMed ID: 9045743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants.
    Guan Z; Buhl LK; Quinn WG; Littleton JT
    Learn Mem; 2011; 18(4):191-206. PubMed ID: 21422168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positional information determines the anatomy and synaptic specificity of cockroach filiform hair afferents using independent mechanisms.
    Blagburn JM; Blanco RE; Thompson KS; Bacon JP
    J Comp Physiol A; 1991 Nov; 169(5):607-14. PubMed ID: 1724462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological plasticity of motor axons in Drosophila mutants with altered excitability.
    Budnik V; Zhong Y; Wu CF
    J Neurosci; 1990 Nov; 10(11):3754-68. PubMed ID: 1700086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disconnected mutants show disruption to the central projections of proprioceptive neurons in Drosophila melanogaster.
    Glossop NR; Shepherd D
    J Neurobiol; 1998 Sep; 36(3):337-47. PubMed ID: 9733070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistent larval sensory neurons in adult Drosophila melanogaster.
    Williams DW; Shepherd D
    J Neurobiol; 1999 May; 39(2):275-86. PubMed ID: 10235681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single neuron mosaics of the drosophila gigas mutant project beyond normal targets and modify behavior.
    Canal I; Acebes A; Ferrús A
    J Neurosci; 1998 Feb; 18(3):999-1008. PubMed ID: 9437021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep restores place learning to the adenylyl cyclase mutant
    Dissel S; Morgan E; Duong V; Chan D; van Swinderen B; Shaw P; Zars T
    J Neurogenet; 2020 Mar; 34(1):83-91. PubMed ID: 31997683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origin of postganglionic and sensory axons in the cervical sympathetic trunk of the cat: a horseradish peroxidase study.
    Wong WC; Leong SK
    J Comp Neurol; 1984 Jan; 222(2):161-5. PubMed ID: 6699205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation between axon morphology in C1 spinal cord and spatial properties of medial vestibulospinal tract neurons in the cat.
    Perlmutter SI; Iwamoto Y; Barke LF; Baker JF; Peterson BW
    J Neurophysiol; 1998 Jan; 79(1):285-303. PubMed ID: 9425198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.