These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 17147203)

  • 1. [Transformation of kinematic characteristics of a precise movement after change in a spatial task].
    Vasil'eva ON
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2006; 56(5):618-28. PubMed ID: 17147203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Motor learning with the minimal involvement of visual afferentation].
    Vasil'eva ON; Baginskas A
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2003; 53(6):681-96. PubMed ID: 14959482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of the kinematic characteristics of a precise movement after a change in a spatial task.
    Vasil'eva ON
    Neurosci Behav Physiol; 2007 Sep; 37(7):659-68. PubMed ID: 17763985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and modelling investigation of learning a fast elbow flexion in the horizontal plane.
    Raikova RT; Gabriel DA; Aladjov HTs
    J Biomech; 2005 Oct; 38(10):2070-7. PubMed ID: 16084207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling investigation of learning a fast elbow flexion in the horizontal plane--prediction of muscle forces and motor units action.
    Raikova RT; Gabriel DA; Aladjov HTs
    Comput Methods Biomech Biomed Engin; 2006 Aug; 9(4):211-9. PubMed ID: 17132529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning and generation of goal-directed arm reaching from scratch.
    Kambara H; Kim K; Shin D; Sato M; Koike Y
    Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromuscular adaptation during skill acquisition on a two degree-of-freedom target-acquisition task: dynamic movement.
    Shemmell J; Tresilian JR; Riek S; Barry BK; Carson RG
    J Neurophysiol; 2005 Nov; 94(5):3058-68. PubMed ID: 15972829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal modulations of agonist and antagonist muscle activities accompanying improved performance of ballistic movements.
    Liang N; Yamashita T; Ni Z; Takahashi M; Murakami T; Yahagi S; Kasai T
    Hum Mov Sci; 2008 Feb; 27(1):12-28. PubMed ID: 17936390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice.
    Porras-García E; Cendelin J; Domínguez-del-Toro E; Vozeh F; Delgado-García JM
    Eur J Neurosci; 2005 Feb; 21(4):979-88. PubMed ID: 15787704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproducibility and minimal detectable change of three-dimensional kinematic analysis of reaching tasks in people with hemiparesis after stroke.
    Wagner JM; Rhodes JA; Patten C
    Phys Ther; 2008 May; 88(5):652-63. PubMed ID: 18326055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematic and myoelectric analysis of skill acquisition: II. 150cm subject group.
    Vorro J; Hobart D
    Arch Phys Med Rehabil; 1981 Nov; 62(11):582-9. PubMed ID: 7316716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning from demonstrations: the role of visual search during observational learning from video and point-light models.
    Horn RR; Williams AM; Scott MA
    J Sports Sci; 2002 Mar; 20(3):253-69. PubMed ID: 11999480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relation of kinematic factors to the acquisition of skill on a novel task.
    Pytel JL
    Can J Appl Sport Sci; 1980 Mar; 5(1):44-8. PubMed ID: 7389047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor learning in children with spina bifida: intact learning and performance on a ballistic task.
    Dennis M; Jewell D; Edelstein K; Brandt ME; Hetherington R; Blaser SE; Fletcher JM
    J Int Neuropsychol Soc; 2006 Sep; 12(5):598-608. PubMed ID: 16961941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Difference in sensorimotor adaptation to horizontal and vertical mirror distortions during ballistic arm movements.
    Caselli P; Conforto S; Schmid M; Accornero N; D'Alessio T
    Hum Mov Sci; 2006 Jun; 25(3):310-25. PubMed ID: 16563539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neural network model for the acquisition of a spatial body scheme through sensorimotor interaction.
    Roschin VY; Frolov AA; Burnod Y; Maier MA
    Neural Comput; 2011 Jul; 23(7):1821-34. PubMed ID: 21492015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for automatic on-line adjustments of hand orientation during natural reaching movements to stationary targets.
    Gosselin-Kessiby N; Messier J; Kalaska JF
    J Neurophysiol; 2008 Apr; 99(4):1653-71. PubMed ID: 18256170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Encoding of movement dynamics by Purkinje cell simple spike activity during fast arm movements under resistive and assistive force fields.
    Yamamoto K; Kawato M; Kotosaka S; Kitazawa S
    J Neurophysiol; 2007 Feb; 97(2):1588-99. PubMed ID: 17079350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A joint-centred model accounts for movement curvature and spatial variability.
    Magescas F; Prablanc C
    Neurosci Lett; 2006 Jul; 403(1-2):114-8. PubMed ID: 16709442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toy-oriented changes during early arm movements IV: shoulder-elbow coordination.
    Lee HM; Bhat A; Scholz JP; Galloway JC
    Infant Behav Dev; 2008 Sep; 31(3):447-69. PubMed ID: 18316128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.