These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 1714733)
1. Naloxone affects both pharmacokinetics and pharmacodynamics of morphine. Application of direct correlation analysis. Shibanoki S; Kubo T; Kogure M; Ishikawa K Biochem Pharmacol; 1991 Aug; 42(5):1107-14. PubMed ID: 1714733 [TBL] [Abstract][Full Text] [Related]
2. Effect of naloxone on morphine-induced changes in striatal dopamine metabolism and glutamate, ascorbic acid and uric acid release in freely moving rats. Enrico P; Mura MA; Esposito G; Serra P; Migheli R; De Natale G; Desole MS; Miele M; Miele E Brain Res; 1998 Jun; 797(1):94-102. PubMed ID: 9630540 [TBL] [Abstract][Full Text] [Related]
3. Direct correlation between level of morphine and its biochemical effect on monoamine systems in mouse brain. Evidence for involvement of dopaminergic neurons in the pharmacological action of acute morphine. Ishikawa K; Shibanoki S; McGaugh JL Biochem Pharmacol; 1983 May; 32(9):1473-8. PubMed ID: 6190484 [TBL] [Abstract][Full Text] [Related]
4. The effects of ethanol in combination with the alpha 2-adrenoceptor agonist dexmedetomidine and the alpha 2-adrenoceptor antagonist atipamezole on brain monoamine metabolites and motor performance of mice. Idänpään-Heikkilä JJ; Björn M; Seppälä T Eur J Pharmacol; 1995 Jan; 292(2):191-9. PubMed ID: 7536679 [TBL] [Abstract][Full Text] [Related]
5. Changes of serotonin and dopamine metabolism in various forebrain areas of rats injected with morphine either systemically or in the raphe nuclei dorsalis and medianus. Spampinato U; Esposito E; Romandini S; Samanin R Brain Res; 1985 Feb; 328(1):89-95. PubMed ID: 2578858 [TBL] [Abstract][Full Text] [Related]
6. Effect of melperone, two of its metabolites and thiothixene on central monoamine metabolism and prolactin levels in rodents. Wiesel FA; Bjerkenstedt L; Skett P Acta Pharmacol Toxicol (Copenh); 1978 Aug; 43(2):129-36. PubMed ID: 696342 [TBL] [Abstract][Full Text] [Related]
7. Pineal melatonin and brain transmitter monoamines in CBA mice during chronic oral nicotine administration. Gäddnäs H; Pietilä K; Alila-Johansson A; Ahtee L Brain Res; 2002 Dec; 957(1):76-83. PubMed ID: 12443982 [TBL] [Abstract][Full Text] [Related]
8. Effects of ketamine on dopamine metabolism during anesthesia in discrete brain regions in mice: comparison with the effects during the recovery and subanesthetic phases. Irifune M; Fukuda T; Nomoto M; Sato T; Kamata Y; Nishikawa T; Mietani W; Yokoyama K; Sugiyama K; Kawahara M Brain Res; 1997 Jul; 763(2):281-4. PubMed ID: 9296573 [TBL] [Abstract][Full Text] [Related]
9. Prostaglandin synthesis inhibition and monoamine metabolites in the rat brain. Abdel-Halim MS; Sjöquist B; Anggård E Prostaglandins; 1979 Dec; 18(6):837-45. PubMed ID: 94946 [TBL] [Abstract][Full Text] [Related]
10. The dynamics of dopamine metabolism in various regions of rat brain. Karoum F; Neff NH; Wyatt RJ Eur J Pharmacol; 1977 Aug; 44(4):311-8. PubMed ID: 891608 [TBL] [Abstract][Full Text] [Related]
11. The effects of morphine on the accumulation of homovanillic and 5-hydroxyindoleacetic acids in the choroid plexus of rats. Huang JT; Wajda IJ Br J Pharmacol; 1977 Jul; 60(3):363-7. PubMed ID: 890207 [TBL] [Abstract][Full Text] [Related]
12. Changes in striatal dopamine metabolism during precipitated morphine withdrawal. Gramsch C; Bläsig J; Herz A Eur J Pharmacol; 1977 Aug; 44(3):231-40. PubMed ID: 560969 [TBL] [Abstract][Full Text] [Related]
13. Dynamic characteristics of dopamine, norepinephrine and serotonin metabolism in axonal endings of the rat hypothalamus and striatum during hypoxia: a study using HPLC with electrochemical detection. Saligaut C; Chretien P; Daoust M; Moore N; Boismare F Methods Find Exp Clin Pharmacol; 1986 Jun; 8(6):343-9. PubMed ID: 2426539 [TBL] [Abstract][Full Text] [Related]
15. Correlative analysis of dopaminergic and serotonergic metabolism across the brain to study monoaminergic function and interaction. Dellu-Hagedorn F; Fitoussi A; De Deurwaerdère P J Neurosci Methods; 2017 Mar; 280():54-63. PubMed ID: 28161298 [TBL] [Abstract][Full Text] [Related]
16. Long-term decreases in striatal dopamine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid after a single injection of amphetamine in iprindole-treated rats: time course and time-dependent interactions with amfonelic acid. Steranka LR Brain Res; 1982 Feb; 234(1):123-36. PubMed ID: 7059818 [TBL] [Abstract][Full Text] [Related]
17. Failure of morphine to increase striatal 3,4-dihydroxyphenylacetic acid in fasted rats. De Montis GM; Olianas MC; Di Lorenzo C; Tagliamonte A Eur J Pharmacol; 1978 Jan; 47(1):121-3. PubMed ID: 618726 [TBL] [Abstract][Full Text] [Related]
18. Effect of probenecid on endogenous and exogenous 3,4-dihydroxyphenylacetic acid and homovanillic acid in the rat brain. Broch OJ Eur J Pharmacol; 1976 Sep; 39(1):33-40. PubMed ID: 964303 [TBL] [Abstract][Full Text] [Related]
19. The distribution and metabolism of chlorpromazine in rats and the relationship to effects on cerebral monoamine metabolism. Wiesel FA; Alfredsson G Eur J Pharmacol; 1976 Dec; 40(2):263-72. PubMed ID: 991935 [TBL] [Abstract][Full Text] [Related]
20. Acute effects of intranigral application of MPP+ on nigral and bilateral striatal release of dopamine simultaneously recorded by microdialysis. Santiago M; Rollema H; de Vries JB; Westerink BH Brain Res; 1991 Jan; 538(2):226-30. PubMed ID: 1707325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]