These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 17147421)

  • 21. Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil.
    Liu L; Li J; Yue F; Yan X; Wang F; Bloszies S; Wang Y
    Chemosphere; 2018 Mar; 194():495-503. PubMed ID: 29241123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings.
    Chen BD; Zhu YG; Duan J; Xiao XY; Smith SE
    Environ Pollut; 2007 May; 147(2):374-80. PubMed ID: 16764975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effects of Arbuscular Mycorrhizal Fungi on the Growth and Uptake of La and Pb by Maize Grown in La and Pb-Contaminated Soil].
    Chang Q; Guo W; Pan L; Wang QF; Zhou XN; Yang L; Li E
    Huan Jing Ke Xue; 2017 Sep; 38(9):3915-3926. PubMed ID: 29965275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza.
    de Andrade SA; da Silveira AP; Jorge RA; de Abreu MF
    Int J Phytoremediation; 2008; 10(1):1-13. PubMed ID: 18709928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improvement of Cupressus atlantica Gaussen growth by inoculation with native arbuscular mycorrhizal fungi.
    Ouahmane L; Hafidi M; Thioulouse J; Ducousso M; Kisa M; Prin Y; Galiana A; Boumezzough A; Duponnois R
    J Appl Microbiol; 2007 Sep; 103(3):683-90. PubMed ID: 17714402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower.
    Chiang PN; Wang MK; Chiu CY; Chou SY
    Environ Toxicol; 2006 Oct; 21(5):479-88. PubMed ID: 16944509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenanthrene and pyrene uptake by arbuscular mycorrhizal maize and their dissipation in soil.
    Wu FY; Yu XZ; Wu SC; Lin XG; Wong MH
    J Hazard Mater; 2011 Mar; 187(1-3):341-7. PubMed ID: 21282002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus.
    Wu N; Huang H; Zhang S; Zhu YG; Christie P; Zhang Y
    Environ Pollut; 2009 May; 157(5):1613-8. PubMed ID: 19168268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium.
    Hechmi N; Ben Aissa N; Abdennaceur H; Jedidi N
    Int J Phytoremediation; 2013; 15(7):703-13. PubMed ID: 23819269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions.
    Bi X; Feng X; Yang Y; Li X; Shin GP; Li F; Qiu G; Li G; Liu T; Fu Z
    Environ Pollut; 2009 Mar; 157(3):834-9. PubMed ID: 19100668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress.
    Sheng M; Tang M; Chen H; Yang B; Zhang F; Huang Y
    Can J Microbiol; 2009 Jul; 55(7):879-86. PubMed ID: 19767861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil.
    Huang Y; Tao S; Chen YJ
    J Environ Sci (China); 2005; 17(2):276-80. PubMed ID: 16295905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effect of rhizospheric environment of VA-mycorrhizal plants on forms of Cu, Zn, Pb and Cd in polluted soil].
    Huang Y; Chen Y; Tao S
    Ying Yong Sheng Tai Xue Bao; 2000 Jun; 11(3):431-4. PubMed ID: 11767649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Effect of Pollination on Cd Phytoextraction From Soil by Maize (Zea mays L.).
    Xu W; Lu G; Wang R; Guo C; Liao C; Yi X; Dang Z
    Int J Phytoremediation; 2015; 17(10):945-50. PubMed ID: 25581531
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Uptake and distribution of Cu, Zn, Pb and Cd in maize related to metals speciation change in rhizosphere].
    Huang Y; Chen Y; Tao S
    Ying Yong Sheng Tai Xue Bao; 2002 Jul; 13(7):859-62. PubMed ID: 12385219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents.
    Chiu KK; Ye ZH; Wong MH
    Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake.
    Xu P; Christie P; Liu Y; Zhang J; Li X
    Environ Pollut; 2008 Nov; 156(1):215-20. PubMed ID: 18280625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil.
    Sheng X; He L; Wang Q; Ye H; Jiang C
    J Hazard Mater; 2008 Jun; 155(1-2):17-22. PubMed ID: 18082946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellular localization of cadmium and structural changes in maize plants grown on a cadmium contaminated soil with and without liming.
    Cunha KP; do Nascimento CW; Pimentel RM; Ferreira CP
    J Hazard Mater; 2008 Dec; 160(1):228-34. PubMed ID: 18417284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cadmium uptake potential of Brassica napus cocropped with Brassica parachinensis and Zea mays.
    Selvam A; Wong JW
    J Hazard Mater; 2009 Aug; 167(1-3):170-8. PubMed ID: 19185420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.