BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 17147439)

  • 1. Protein binding and astringent taste of a polymeric procyanidin, 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose, castalagin, and grandinin.
    Hofmann T; Glabasnia A; Schwarz B; Wisman KN; Gangwer KA; Hagerman AE
    J Agric Food Chem; 2006 Dec; 54(25):9503-9. PubMed ID: 17147439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Bitter Taste Receptors Are Activated by Different Classes of Polyphenols.
    Soares S; Silva MS; García-Estevez I; Groβmann P; Brás N; Brandão E; Mateus N; de Freitas V; Behrens M; Meyerhof W
    J Agric Food Chem; 2018 Aug; 66(33):8814-8823. PubMed ID: 30056706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction pH and protein affect the oxidation products of beta-pentagalloyl glucose.
    Chen Y; Hagerman AE
    Free Radic Res; 2005 Feb; 39(2):117-24. PubMed ID: 15763959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of tannins and related polyphenols in commercial products of tormentil (Potentilla tormentilla).
    Fecka I; Kucharska AZ; Kowalczyk A
    Phytochem Anal; 2015; 26(5):353-66. PubMed ID: 26047031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solubility of Tannins and Preparation of Oil-Soluble Derivatives.
    Tanaka T; Matsuo Y; Saito Y
    J Oleo Sci; 2018; 67(10):1179-1187. PubMed ID: 30305552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding.
    Cala O; Dufourc EJ; Fouquet E; Manigand C; Laguerre M; Pianet I
    Langmuir; 2012 Dec; 28(50):17410-8. PubMed ID: 23173977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different phenolic compounds activate distinct human bitter taste receptors.
    Soares S; Kohl S; Thalmann S; Mateus N; Meyerhof W; De Freitas V
    J Agric Food Chem; 2013 Feb; 61(7):1525-33. PubMed ID: 23311874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction study between wheat-derived peptides and procyanidin B3 by mass spectrometry.
    Dias R; Perez-Gregorio MR; Mateus N; De Freitas V
    Food Chem; 2016 Mar; 194():1304-12. PubMed ID: 26471686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antitumor agents, 129. Tannins and related compounds as selective cytotoxic agents.
    Kashiwada Y; Nonaka G; Nishioka I; Chang JJ; Lee KH
    J Nat Prod; 1992 Aug; 55(8):1033-43. PubMed ID: 1431932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects.
    Cala O; Pinaud N; Simon C; Fouquet E; Laguerre M; Dufourc EJ; Pianet I
    FASEB J; 2010 Nov; 24(11):4281-90. PubMed ID: 20605948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of the interaction between mucin and oenological tannins by Surface Plasmon Resonance (SPR); relationship with astringency.
    Gombau J; Nadal P; Canela N; Gómez-Alonso S; García-Romero E; Smith P; Hermosín-Gutiérrez I; Canals JM; Zamora F
    Food Chem; 2019 Mar; 275():397-406. PubMed ID: 30724213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced radical scavenging activity of a procyanidin B3 analogue comprised of a dimer of planar catechin.
    Mizuno M; Nakanishi I; Matsumoto KI; Fukuhara K
    Bioorg Med Chem Lett; 2017 Nov; 27(22):5010-5013. PubMed ID: 29054360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between Ellagitannins and Salivary Proline-Rich Proteins.
    Soares S; Brandão E; García-Estevez I; Fonseca F; Guerreiro C; Ferreira-da-Silva F; Mateus N; Deffieux D; Quideau S; de Freitas V
    J Agric Food Chem; 2019 Aug; 67(34):9579-9590. PubMed ID: 31381329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the binding of procyanidin B3 to trypsin and pepsin: A multi-technique approach.
    Li X; Geng M
    Int J Biol Macromol; 2016 Apr; 85():168-78. PubMed ID: 26740464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Protein Precipitation Ability of Structurally Diverse Procyanidin-Rich Condensed Tannins in Two Buffer Systems.
    Zeller WE; Reinhardt LA; Robe JT; Sullivan ML; Panke-Buisse K
    J Agric Food Chem; 2020 Feb; 68(7):2016-2023. PubMed ID: 31986021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Procyanidin structure defines the extent and specificity of angiotensin I converting enzyme inhibition.
    Ottaviani JI; Actis-Goretta L; Villordo JJ; Fraga CG
    Biochimie; 2006; 88(3-4):359-65. PubMed ID: 16330143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigallocatechin-3-gallate and penta-O-galloyl-β-D-glucose inhibit protein phosphatase-1.
    Kiss A; Bécsi B; Kolozsvári B; Komáromi I; Kövér KE; Erdődi F
    FEBS J; 2013 Jan; 280(2):612-26. PubMed ID: 22260360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Procyanidin xylosides from the bark of Betula pendula.
    Liimatainen J; Karonen M; Sinkkonen J
    Phytochemistry; 2012 Apr; 76():178-83. PubMed ID: 22273040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tannin structural elucidation and quantitative ³¹P NMR analysis. 2. Hydrolyzable tannins and proanthocyanidins.
    Melone F; Saladino R; Lange H; Crestini C
    J Agric Food Chem; 2013 Oct; 61(39):9316-24. PubMed ID: 23998855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antihypertensive principles from the leaves of Melastoma candidum.
    Cheng JT; Hsu FL; Chen HF
    Planta Med; 1993 Oct; 59(5):405-7. PubMed ID: 8255931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.