BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

654 related articles for article (PubMed ID: 17147512)

  • 1. A novel PEGylation of chitosan nanoparticles for gene delivery.
    Zhang Y; Chen J; Zhang Y; Pan Y; Zhao J; Ren L; Liao M; Hu Z; Kong L; Wang J
    Biotechnol Appl Biochem; 2007 Apr; 46(Pt 4):197-204. PubMed ID: 17147512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation, characterization and transfection efficiency of cationic PEGylated PLA nanoparticles as gene delivery systems.
    Chen J; Tian B; Yin X; Zhang Y; Hu D; Hu Z; Liu M; Pan Y; Zhao J; Li H; Hou C; Wang J; Zhang Y
    J Biotechnol; 2007 Jun; 130(2):107-13. PubMed ID: 17467097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chitosan-g-PEG/DNA complexes deliver gene to the rat liver via intrabiliary and intraportal infusions.
    Jiang X; Dai H; Leong KW; Goh SH; Mao HQ; Yang YY
    J Gene Med; 2006 Apr; 8(4):477-87. PubMed ID: 16389625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA: implications for cancer gene therapy.
    Walsh M; Tangney M; O'Neill MJ; Larkin JO; Soden DM; McKenna SL; Darcy R; O'Sullivan GC; O'Driscoll CM
    Mol Pharm; 2006; 3(6):644-53. PubMed ID: 17140252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor-mediated gene delivery by folate-poly(ethylene glycol)-grafted-trimethyl chitosan in vitro.
    Zheng Y; Song X; He G; Cai Z; Zhou Y; Yu B; Xu J; Wei Y; Hou S
    J Drug Target; 2011 Sep; 19(8):647-56. PubMed ID: 20964597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of incorporation of poly(gamma-glutamic acid) in chitosan/DNA complex nanoparticles on cellular uptake and transfection efficiency.
    Peng SF; Yang MJ; Su CJ; Chen HL; Lee PW; Wei MC; Sung HW
    Biomaterials; 2009 Mar; 30(9):1797-808. PubMed ID: 19110309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine-chitosan/DNA self-assemble nanoparticles for gene delivery: In vitro characteristics and transfection efficiency.
    Gao Y; Xu Z; Chen S; Gu W; Chen L; Li Y
    Int J Pharm; 2008 Jul; 359(1-2):241-6. PubMed ID: 18479851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery.
    Chan P; Kurisawa M; Chung JE; Yang YY
    Biomaterials; 2007 Jan; 28(3):540-9. PubMed ID: 16999995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and in vitro transfection efficiency of chitosan microspheres containing plasmid DNA:poly(L-lysine) complexes.
    Aral C; Akbuga J
    J Pharm Pharm Sci; 2003; 6(3):321-6. PubMed ID: 14738712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Chitosan nanoparticles as gene vector: effect of particle size on transfection efficiency].
    Yang XR; Zong L; Yuan XY
    Yao Xue Xue Bao; 2007 Jul; 42(7):774-9. PubMed ID: 17882964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene transfer by DNA/mannosylated chitosan complexes into mouse peritoneal macrophages.
    Hashimoto M; Morimoto M; Saimoto H; Shigemasa Y; Yanagie H; Eriguchi M; Sato T
    Biotechnol Lett; 2006 Jun; 28(11):815-21. PubMed ID: 16786247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanospheres formulated from L-tyrosine polyphosphate exhibiting sustained release of polyplexes and in vitro controlled transfection properties.
    Ditto AJ; Shah PN; Gump LR; Yun YH
    Mol Pharm; 2009; 6(3):986-95. PubMed ID: 19341289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PEGylation of poly(ethylene imine) affects stability of complexes with plasmid DNA under in vivo conditions in a dose-dependent manner after intravenous injection into mice.
    Merdan T; Kunath K; Petersen H; Bakowsky U; Voigt KH; Kopecek J; Kissel T
    Bioconjug Chem; 2005; 16(4):785-92. PubMed ID: 16029019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery.
    Ping Y; Liu C; Zhang Z; Liu KL; Chen J; Li J
    Biomaterials; 2011 Nov; 32(32):8328-41. PubMed ID: 21840593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmid DNA-loaded chitosan/TPP nanoparticles for topical gene delivery.
    Özbaş-Turan S; Akbuğa J
    Drug Deliv; 2011 Apr; 18(3):215-22. PubMed ID: 21226549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery.
    Csaba N; Köping-Höggård M; Alonso MJ
    Int J Pharm; 2009 Dec; 382(1-2):205-14. PubMed ID: 19660537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear localization signal peptides enhance transfection efficiency of chitosan/DNA complexes.
    Opanasopit P; Rojanarata T; Apirakaramwong A; Ngawhirunpat T; Ruktanonchai U
    Int J Pharm; 2009 Dec; 382(1-2):291-5. PubMed ID: 19716869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactose-poly(ethylene glycol)-grafted poly-L-lysine as hepatoma cell-tapgeted gene carrier.
    Choi YH; Liu F; Park JS; Kim SW
    Bioconjug Chem; 1998; 9(6):708-18. PubMed ID: 9815164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan/cyclodextrin nanoparticles can efficiently transfect the airway epithelium in vitro.
    Teijeiro-Osorio D; Remuñán-López C; Alonso MJ
    Eur J Pharm Biopharm; 2009 Feb; 71(2):257-63. PubMed ID: 18955137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: results of an in vitro and in vivo study.
    Zheng F; Shi XW; Yang GF; Gong LL; Yuan HY; Cui YJ; Wang Y; Du YM; Li Y
    Life Sci; 2007 Jan; 80(4):388-96. PubMed ID: 17074366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.