These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 17147608)

  • 41. HIGHER LEVELS OF INTEGRATION.
    Gerard RW
    Science; 1942 Mar; 95(2465):309-13. PubMed ID: 17752665
    [No Abstract]   [Full Text] [Related]  

  • 42. Multigene Transformation Through Cre-lox Mediated Site-Specific Integration in Rice.
    Pathak B; Nandy S; Srivastava V
    Methods Mol Biol; 2022; 2408():293-302. PubMed ID: 35325430
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recombinase-mediated integration of a multigene cassette in rice leads to stable expression and inheritance of the stacked locus.
    Pathak B; Srivastava V
    Plant Direct; 2020 Jul; 4(7):e00236. PubMed ID: 32760877
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Uniform Expression and Relatively Small Position Effects Characterize Sister Transformants in Maize and Soybean.
    Betts SD; Basu S; Bolar J; Booth R; Chang S; Cigan AM; Farrell J; Gao H; Harkins K; Kinney A; Lenderts B; Li Z; Liu L; McEnany M; Mutti J; Peterson D; Sander JD; Scelonge C; Sopko X; Stucker D; Wu E; Chilcoat ND
    Front Plant Sci; 2019; 10():1209. PubMed ID: 31708936
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Generation of a selectable marker free, highly expressed single copy locus as landing pad for transgene stacking in sugarcane.
    Zhao Y; Kim JY; Karan R; Jung JH; Pathak B; Williamson B; Kannan B; Wang D; Fan C; Yu W; Dong S; Srivastava V; Altpeter F
    Plant Mol Biol; 2019 Jun; 100(3):247-263. PubMed ID: 30919152
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High efficiency Agrobacterium-mediated site-specific gene integration in maize utilizing the FLP-FRT recombination system.
    Anand A; Wu E; Li Z; TeRonde S; Arling M; Lenderts B; Mutti JS; Gordon-Kamm W; Jones TJ; Chilcoat ND
    Plant Biotechnol J; 2019 Aug; 17(8):1636-1645. PubMed ID: 30706638
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template.
    Ran Y; Patron N; Kay P; Wong D; Buchanan M; Cao YY; Sawbridge T; Davies JP; Mason J; Webb SR; Spangenberg G; Ainley WM; Walsh TA; Hayden MJ
    Plant Biotechnol J; 2018 Dec; 16(12):2088-2101. PubMed ID: 29734518
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthetic genetic circuits in crop plants.
    de Lange O; Klavins E; Nemhauser J
    Curr Opin Biotechnol; 2018 Feb; 49():16-22. PubMed ID: 28772191
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of gene order in DNA constructs on gene expression upon integration into plant genome.
    Aydın Akbudak M; Srivastava V
    3 Biotech; 2017 Jun; 7(2):94. PubMed ID: 28555430
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transcription Activator-Like Effector Nucleases (TALEN)-Mediated Targeted DNA Insertion in Potato Plants.
    Forsyth A; Weeks T; Richael C; Duan H
    Front Plant Sci; 2016; 7():1572. PubMed ID: 27826306
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Progress of targeted genome modification approaches in higher plants.
    Cardi T; Neal Stewart C
    Plant Cell Rep; 2016 Jul; 35(7):1401-16. PubMed ID: 27025856
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gene stacking in plant cell using recombinases for gene integration and nucleases for marker gene deletion.
    Nandy S; Zhao S; Pathak BP; Manoharan M; Srivastava V
    BMC Biotechnol; 2015 Oct; 15():93. PubMed ID: 26452472
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineered minichromosomes in plants.
    Birchler JA
    Chromosome Res; 2015 Feb; 23(1):77-85. PubMed ID: 25596825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Maize transformation technology development for commercial event generation.
    Que Q; Elumalai S; Li X; Zhong H; Nalapalli S; Schweiner M; Fei X; Nuccio M; Kelliher T; Gu W; Chen Z; Chilton MD
    Front Plant Sci; 2014; 5():379. PubMed ID: 25140170
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision.
    Martin-Ortigosa S; Peterson DJ; Valenstein JS; Lin VS; Trewyn BG; Lyznik LA; Wang K
    Plant Physiol; 2014 Feb; 164(2):537-47. PubMed ID: 24376280
    [TBL] [Abstract][Full Text] [Related]  

  • 56. phiC31 integrase-mediated site-specific recombination in barley.
    Kapusi E; Kempe K; Rubtsova M; Kumlehn J; Gils M
    PLoS One; 2012; 7(9):e45353. PubMed ID: 23024817
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Bxb1 recombination system demonstrates heritable transmission of site-specific excision in Arabidopsis.
    Thomson JG; Chan R; Smith J; Thilmony R; Yau YY; Wang Y; Ow DW
    BMC Biotechnol; 2012 Mar; 12():9. PubMed ID: 22436504
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improved FLP recombinase, FLPe, efficiently removes marker gene from transgene locus developed by Cre-lox mediated site-specific gene integration in rice.
    Akbudak MA; Srivastava V
    Mol Biotechnol; 2011 Sep; 49(1):82-9. PubMed ID: 21274659
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recombinase technology: applications and possibilities.
    Wang Y; Yau YY; Perkins-Balding D; Thomson JG
    Plant Cell Rep; 2011 Mar; 30(3):267-85. PubMed ID: 20972794
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PhiC31 recombination system demonstrates heritable germinal transmission of site-specific excision from the Arabidopsis genome.
    Thomson JG; Chan R; Thilmony R; Yau YY; Ow DW
    BMC Biotechnol; 2010 Feb; 10():17. PubMed ID: 20178628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.