BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 1714772)

  • 41. Emerging role of heat shock proteins in biology and medicine.
    Jäättelä M; Wissing D
    Ann Med; 1992 Aug; 24(4):249-58. PubMed ID: 1389087
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity.
    Opipari AW; Hu HM; Yabkowitz R; Dixit VM
    J Biol Chem; 1992 Jun; 267(18):12424-7. PubMed ID: 1618749
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Suppression of intracellular resistance factors by adriamycin augments heat-induced apoptosis via interleukin-1beta-converting enzyme activation in pancreatic carcinoma cells.
    Kobayashi D; Watanabe N; Sasaki H; Okamoto T; Tsuji N; Sato T; Yamauchi N; Niitsu Y
    Int J Cancer; 1998 May; 76(4):552-5. PubMed ID: 9590133
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Heat shock enhances the susceptibility of tumor cells to lysis by lymphokine-activated killer cells.
    Fujieda S; Noda I; Saito H; Hoshino T; Yagita M
    Arch Otolaryngol Head Neck Surg; 1995 Sep; 121(9):1009-14. PubMed ID: 7646852
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Changes in heat shock protein 70 and ubiquitin mRNA levels in C1300 N2A mouse neuroblastoma cells following treatment with iron.
    Uney JB; Anderton BH; Thomas SM
    J Neurochem; 1993 Feb; 60(2):659-65. PubMed ID: 8380440
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Decreased heat- and tumor necrosis factor-mediated hsp28 phosphorylation in thermotolerant HeLa cells.
    Arrigo AP; Michel MR
    FEBS Lett; 1991 Apr; 282(1):152-6. PubMed ID: 2026252
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heat resistance in mammalian cells: lessons and challenges.
    Laszlo A; Venetianer A
    Ann N Y Acad Sci; 1998 Jun; 851():169-78. PubMed ID: 9668618
    [No Abstract]   [Full Text] [Related]  

  • 48. Endothelial cell hypoxic stress proteins.
    Farber HW; Graven KK
    Chest; 1998 Jul; 114(1 Suppl):64S-65S. PubMed ID: 9676633
    [No Abstract]   [Full Text] [Related]  

  • 49. Fishing in the gene pool.
    Galley HF; Lowe PR
    Crit Care Med; 2003 Jan; 31(1):317-8. PubMed ID: 12545041
    [No Abstract]   [Full Text] [Related]  

  • 50. The Koch phenomenon and the immunopathology of tuberculosis.
    Rook GA; Stanford JL
    Curr Top Microbiol Immunol; 1996; 215():239-62. PubMed ID: 8791717
    [No Abstract]   [Full Text] [Related]  

  • 51. Molecular studies relevant to radiation oncology--a radiation study section workshop. Taos, New Mexico, February 12, 1994.
    Radiat Res; 1994 Oct; 140(1):143-50. PubMed ID: 7938448
    [No Abstract]   [Full Text] [Related]  

  • 52. MicroRNA-30c-2-3p negatively regulates NF-κB signaling and cell cycle progression through downregulation of TRADD and CCNE1 in breast cancer.
    Shukla K; Sharma AK; Ward A; Will R; Hielscher T; Balwierz A; Breunig C; Münstermann E; König R; Keklikoglou I; Wiemann S
    Mol Oncol; 2015 Jun; 9(6):1106-19. PubMed ID: 25732226
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heat shock protein 70 inhibits shrinkage-induced programmed cell death via mechanisms independent of effects on cell volume-regulatory membrane transport proteins.
    Nylandsted J; Jäättelä M; Hoffmann EK; Pedersen SF
    Pflugers Arch; 2004 Nov; 449(2):175-85. PubMed ID: 15340851
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis.
    Wissing D; Mouritzen H; Egeblad M; Poirier GG; Jäättelä M
    Proc Natl Acad Sci U S A; 1997 May; 94(10):5073-7. PubMed ID: 9144192
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Heat-shock proteins protect cells from monocyte cytotoxicity: possible mechanism of self-protection.
    Jäättelä M; Wissing D
    J Exp Med; 1993 Jan; 177(1):231-6. PubMed ID: 8418204
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. Evidence for increased cell viability and suppression of cytokine release.
    Simon MM; Reikerstorfer A; Schwarz A; Krone C; Luger TA; Jäättelä M; Schwarz T
    J Clin Invest; 1995 Mar; 95(3):926-33. PubMed ID: 7883992
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity.
    Jäättelä M; Wissing D; Bauer PA; Li GC
    EMBO J; 1992 Oct; 11(10):3507-12. PubMed ID: 1396553
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heat shock inhibits the cytotoxic action of TNF-alpha in tumor cells but does not alter its noncytotoxic actions in endothelial and adrenal cells.
    Jäättelä M; Pinola M; Saksela E
    Lymphokine Cytokine Res; 1991 Apr; 10(1-2):119-25. PubMed ID: 1714772
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Induction of the heat shock response protects cells from lysis by tumor necrosis factor.
    Kusher DI; Ware CF; Gooding LR
    J Immunol; 1990 Nov; 145(9):2925-31. PubMed ID: 2170528
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Induction of heat shock protein 72 synthesis by endogenous tumor necrosis factor via enhancement of the heat shock element-binding activity of heat shock factor 1.
    Watanabe N; Tsuji N; Akiyama S; Sasaki H; Okamoto T; Kobayashi D; Sato T; Hagino T; Yamauchi N; Niitsu Y; Nakai A; Nagata K
    Eur J Immunol; 1997 Nov; 27(11):2830-4. PubMed ID: 9394806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.