BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 17147797)

  • 1. Increased susceptibility to repeated freeze-thaw cycles in Escherichia coli following long-term evolution in a benign environment.
    Sleight SC; Wigginton NS; Lenski RE
    BMC Evol Biol; 2006 Dec; 6():104. PubMed ID: 17147797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary adaptation to freeze-thaw-growth cycles in Escherichia coli.
    Sleight SC; Lenski RE
    Physiol Biochem Zool; 2007; 80(4):370-85. PubMed ID: 17508333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of repeated freeze-thaw cycles on geographically different populations of the freeze-tolerant worm Enchytraeus albidus (Oligochaeta).
    Fisker KV; Holmstrup M; Malte H; Overgaard J
    J Exp Biol; 2014 Nov; 217(Pt 21):3843-52. PubMed ID: 25214492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryoprotectant Production in Freeze-Tolerant Wood Frogs Is Augmented by Multiple Freeze-Thaw Cycles.
    Larson DJ; Barnes BM
    Physiol Biochem Zool; 2016; 89(4):340-6. PubMed ID: 27327184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic basis of evolutionary adaptation by Escherichia coli to stressful cycles of freezing, thawing and growth.
    Sleight SC; Orlic C; Schneider D; Lenski RE
    Genetics; 2008 Sep; 180(1):431-43. PubMed ID: 18757947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring influenza RNA quantity after prolonged storage or multiple freeze/thaw cycles.
    Granados A; Petrich A; McGeer A; Gubbay JB
    J Virol Methods; 2017 Sep; 247():45-50. PubMed ID: 28572040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of fulvic acid and fulvic ions on Escherichia coli survival in river under repeated freeze-thaw cycles.
    Wang X; Zhang D; Chen W; Tao J; Xu M; Guo P
    Environ Pollut; 2019 Apr; 247():1100-1109. PubMed ID: 30823339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeated freezing induces oxidative stress and reduces survival in the freeze-tolerant goldenrod gall fly, Eurosta solidaginis.
    Doelling AR; Griffis N; Williams JB
    J Insect Physiol; 2014 Aug; 67():20-7. PubMed ID: 24910457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine).
    Mayr S; Gruber A; Bauer H
    Planta; 2003 Jul; 217(3):436-41. PubMed ID: 14520570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeze-thaw tolerance and clues to the winter survival of a soil community.
    Walker VK; Palmer GR; Voordouw G
    Appl Environ Microbiol; 2006 Mar; 72(3):1784-92. PubMed ID: 16517623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental evolutionary study on adaptation to temporally fluctuating pH in Escherichia coli.
    Hughes BS; Cullum AJ; Bennett AF
    Physiol Biochem Zool; 2007; 80(4):406-21. PubMed ID: 17508336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromechanical properties of canine femoral articular cartilage following multiple freeze-thaw cycles.
    Peters AE; Comerford EJ; Macaulay S; Bates KT; Akhtar R
    J Mech Behav Biomed Mater; 2017 Jul; 71():114-121. PubMed ID: 28285060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of gamma irradiation and repetitive freeze-thaw cycles on the biomechanical properties of human flexor digitorum superficialis tendons.
    Ren D; Sun K; Tian S; Yang X; Zhang C; Wang W; Huang H; Zhang J; Deng Y
    J Biomech; 2012 Jan; 45(2):252-6. PubMed ID: 22078178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of freeze-thaw events in low temperature ecotoxicology of cold tolerant enchytraeids.
    Silva AL; Enggrob K; Slotsbo S; Amorim MJ; Holmstrup M
    Environ Sci Technol; 2014 Aug; 48(16):9790-6. PubMed ID: 25072919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EVOLUTIONARY ADAPTATION TO TEMPERATURE. IV. ADAPTATION OF ESCHERICHIA COLI AT A NICHE BOUNDARY.
    Mongold JA; Bennett AF; Lenski RE
    Evolution; 1996 Feb; 50(1):35-43. PubMed ID: 28568880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of high-elevation Cryptococcus sp. during extreme freeze-thaw cycles.
    Vimercati L; Hamsher S; Schubert Z; Schmidt SK
    Extremophiles; 2016 Sep; 20(5):579-88. PubMed ID: 27315166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of freezing parameters (freeze cycle and thaw process) on tissue destruction following renal cryoablation.
    Woolley ML; Schulsinger DA; Durand DB; Zeltser IS; Waltzer WC
    J Endourol; 2002 Sep; 16(7):519-22. PubMed ID: 12396446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of repeated loading and freeze-thaw cycling on immature bovine thoracic motion segment stiffness.
    Sunni N; Askin GN; Labrom RD; Izatt MT; Pearcy MJ; Adam CJ
    Proc Inst Mech Eng H; 2014 Oct; 228(10):1100-7. PubMed ID: 25406230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Repeated Freeze-Thaw on Serum Biomarkers Associated with Eye Disease.
    Gao Y; Tang L; Tang B; Cao W; Sun X
    Med Sci Monit; 2018 Jun; 24():4481-4488. PubMed ID: 29958264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary adaptation to environmental pH in experimental lineages of Escherichia coli.
    Hughes BS; Cullum AJ; Bennett AF
    Evolution; 2007 Jul; 61(7):1725-34. PubMed ID: 17598751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.