These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 17148048)

  • 21. A systematic analysis of the Braitenberg vehicle 2b for point-like stimulus sources.
    Rañó I
    Bioinspir Biomim; 2012 Sep; 7(3):036015. PubMed ID: 22585337
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ophiuroid robot that self-organizes periodic and non-periodic arm movements.
    Kano T; Suzuki S; Watanabe W; Ishiguro A
    Bioinspir Biomim; 2012 Sep; 7(3):034001. PubMed ID: 22617431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Mobile autonomous robots-Possibilities and limits].
    Maehle E; Brockmann W; Walthelm A
    Zentralbl Chir; 2002 Feb; 127(2):134-40. PubMed ID: 11894217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A decentralized control scheme for an effective coordination of phasic and tonic control in a snake-like robot.
    Sato T; Kano T; Ishiguro A
    Bioinspir Biomim; 2012 Mar; 7(1):016005. PubMed ID: 22183033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TAROS 2007: Towards Autonomous Robotic Systems.
    Wilson M; Labrosse F; Nehmzow U; Melhuish C; Witkowski M
    Bioinspir Biomim; 2008 Sep; 3(3):030201. PubMed ID: 18591734
    [No Abstract]   [Full Text] [Related]  

  • 26. Reaching control of a full-torso, modelled musculoskeletal robot using muscle synergies emergent under reinforcement learning.
    Diamond A; Holland OE
    Bioinspir Biomim; 2014 Mar; 9(1):016015. PubMed ID: 24523354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tactile surface classification for limbed robots using a pressure sensitive robot skin.
    Shill JJ; Collins EG; Coyle E; Clark J
    Bioinspir Biomim; 2015 Feb; 10(1):016012. PubMed ID: 25642694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning in and from brain-based devices.
    Edelman GM
    Science; 2007 Nov; 318(5853):1103-5. PubMed ID: 18006739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A biologically inspired meta-control navigation system for the Psikharpax rat robot.
    Caluwaerts K; Staffa M; N'Guyen S; Grand C; Dollé L; Favre-Félix A; Girard B; Khamassi M
    Bioinspir Biomim; 2012 Jun; 7(2):025009. PubMed ID: 22617382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contextual action recognition and target localization with an active allocation of attention on a humanoid robot.
    Ognibene D; Chinellato E; Sarabia M; Demiris Y
    Bioinspir Biomim; 2013 Sep; 8(3):035002. PubMed ID: 23981534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An octopus-bioinspired solution to movement and manipulation for soft robots.
    Calisti M; Giorelli M; Levy G; Mazzolai B; Hochner B; Laschi C; Dario P
    Bioinspir Biomim; 2011 Sep; 6(3):036002. PubMed ID: 21670493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlling legs for locomotion-insights from robotics and neurobiology.
    Buschmann T; Ewald A; von Twickel A; Büschges A
    Bioinspir Biomim; 2015 Jun; 10(4):041001. PubMed ID: 26119450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion.
    Manfredi L; Assaf T; Mintchev S; Marrazza S; Capantini L; Orofino S; Ascari L; Grillner S; Wallén P; Ekeberg O; Stefanini C; Dario P
    Biol Cybern; 2013 Oct; 107(5):513-27. PubMed ID: 24030051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Embodied cognition for autonomous interactive robots.
    Hoffman G
    Top Cogn Sci; 2012 Oct; 4(4):759-72. PubMed ID: 22893571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Science, technology and the future of small autonomous drones.
    Floreano D; Wood RJ
    Nature; 2015 May; 521(7553):460-6. PubMed ID: 26017445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Animal-to-robot social attachment: initial requisites in a gallinaceous bird.
    Jolly L; Pittet F; Caudal JP; Mouret JB; Houdelier C; Lumineau S; de Margerie E
    Bioinspir Biomim; 2016 Feb; 11(1):016007. PubMed ID: 26845286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.
    Ampatzis C; Tuci E; Trianni V; Christensen AL; Dorigo M
    Artif Life; 2009; 15(4):465-84. PubMed ID: 19463056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A biorobotic pectoral fin for autonomous undersea vehicles.
    Tangorra JL; Davidson SN; Madden PG; Lauder GV; Hunter IW
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2726-9. PubMed ID: 17946977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A survey of snake-inspired robot designs.
    Hopkins JK; Spranklin BW; Gupta SK
    Bioinspir Biomim; 2009 Jun; 4(2):021001. PubMed ID: 19158415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.