BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 17148201)

  • 1. Why not walk faster?
    Usherwood JR
    Biol Lett; 2005 Sep; 1(3):338-41. PubMed ID: 17148201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical energy in toddler gait. A trade-off between economy and stability?
    Hallemans A; Aerts P; Otten B; De Deyn PP; De Clercq D
    J Exp Biol; 2004 Jun; 207(Pt 14):2417-31. PubMed ID: 15184514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Giant Galapagos tortoises walk without inverted pendulum mechanical-energy exchange.
    Zani PA; Gottschall JS; Kram R
    J Exp Biol; 2005 Apr; 208(Pt 8):1489-94. PubMed ID: 15802673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking.
    Kubo M; Wagenaar RC; Saltzman E; Holt KG
    Biol Cybern; 2004 Aug; 91(2):91-8. PubMed ID: 15351887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical and physiological aspects of legged locomotion in humans.
    Saibene F; Minetti AE
    Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical and energetic determinants of the walk-trot transition in horses.
    Griffin TM; Kram R; Wickler SJ; Hoyt DF
    J Exp Biol; 2004 Nov; 207(Pt 24):4215-23. PubMed ID: 15531642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of pendulum mechanism and kinematic coordination from the first unsupported steps in toddlers.
    Ivanenko YP; Dominici N; Cappellini G; Dan B; Cheron G; Lacquaniti F
    J Exp Biol; 2004 Oct; 207(Pt 21):3797-810. PubMed ID: 15371487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IMU-based ambulatory walking speed estimation in constrained treadmill and overground walking.
    Yang S; Li Q
    Comput Methods Biomech Biomed Engin; 2012; 15(3):313-22. PubMed ID: 21294007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: I. Organismal metabolism and biomechanics.
    Marsh RL; Ellerby DJ; Henry HT; Rubenson J
    J Exp Biol; 2006 Jun; 209(Pt 11):2050-63. PubMed ID: 16709908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of two-dimensional induced accelerations from measured kinematic and kinetic data.
    Hof AL; Otten E
    Gait Posture; 2005 Nov; 22(3):182-8. PubMed ID: 16214657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematics of the transition between walking and running when gradually changing speed.
    Segers V; Lenoir M; Aerts P; De Clercq D
    Gait Posture; 2007 Sep; 26(3):349-61. PubMed ID: 17134903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability and validity of bilateral thigh and foot accelerometry measures of walking in healthy and hemiparetic subjects.
    Saremi K; Marehbian J; Yan X; Regnaux JP; Elashoff R; Bussel B; Dobkin BH
    Neurorehabil Neural Repair; 2006 Jun; 20(2):297-305. PubMed ID: 16679506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of treadmill acceleration on actual walk-to-run transition.
    Van Caekenberghe I; Segers V; De Smet K; Aerts P; De Clercq D
    Gait Posture; 2010 Jan; 31(1):52-6. PubMed ID: 19796948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Walking speed estimation using a shank-mounted inertial measurement unit.
    Li Q; Young M; Naing V; Donelan JM
    J Biomech; 2010 May; 43(8):1640-3. PubMed ID: 20185136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of the body centre of mass during actual acceleration across transition speed.
    Segers V; Aerts P; Lenoir M; De Clercq D
    J Exp Biol; 2007 Feb; 210(Pt 4):578-85. PubMed ID: 17267643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanics of quadrupedal walking: how do four-legged animals achieve inverted pendulum-like movements?
    Griffin TM; Main RP; Farley CT
    J Exp Biol; 2004 Sep; 207(Pt 20):3545-58. PubMed ID: 15339951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal characteristics of the walk-to-run and run-to-walk transition when gradually changing speed.
    Segers V; Aerts P; Lenoir M; De Clercq D
    Gait Posture; 2006 Oct; 24(2):247-54. PubMed ID: 16314100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer optimization of a minimal biped model discovers walking and running.
    Srinivasan M; Ruina A
    Nature; 2006 Jan; 439(7072):72-5. PubMed ID: 16155564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic mechanisms to alter walking speed.
    Orendurff MS; Bernatz GC; Schoen JA; Klute GK
    Gait Posture; 2008 May; 27(4):603-10. PubMed ID: 17920886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition.
    Ruina A; Bertram JE; Srinivasan M
    J Theor Biol; 2005 Nov; 237(2):170-92. PubMed ID: 15961114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.