These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Predicting methylation status of CpG islands in the human brain. Fang F; Fan S; Zhang X; Zhang MQ Bioinformatics; 2006 Sep; 22(18):2204-9. PubMed ID: 16837523 [TBL] [Abstract][Full Text] [Related]
3. PRIMEGENS-v2: genome-wide primer design for analyzing DNA methylation patterns of CpG islands. Srivastava GP; Guo J; Shi H; Xu D Bioinformatics; 2008 Sep; 24(17):1837-42. PubMed ID: 18579568 [TBL] [Abstract][Full Text] [Related]
4. The CpG island methylator phenotype correlates with long-range epigenetic silencing in colorectal cancer. Karpinski P; Ramsey D; Grzebieniak Z; Sasiadek MM; Blin N Mol Cancer Res; 2008 Apr; 6(4):585-91. PubMed ID: 18403637 [TBL] [Abstract][Full Text] [Related]
5. Detecting novel hypermethylated genes in breast cancer benefiting from feature selection. Lv J; Su J; Wang F; Qi Y; Liu H; Zhang Y Comput Biol Med; 2010 Feb; 40(2):159-67. PubMed ID: 20044084 [TBL] [Abstract][Full Text] [Related]
6. Formamide as a denaturant for bisulfite conversion of genomic DNA: Bisulfite sequencing of the GSTPi and RARbeta2 genes of 43 formalin-fixed paraffin-embedded prostate cancer specimens. Zon G; Barker MA; Kaur P; Groshen S; Jones LW; Imam SA; Boyd VL Anal Biochem; 2009 Sep; 392(2):117-25. PubMed ID: 19505431 [TBL] [Abstract][Full Text] [Related]
7. DNA motifs associated with aberrant CpG island methylation. Feltus FA; Lee EK; Costello JF; Plass C; Vertino PM Genomics; 2006 May; 87(5):572-9. PubMed ID: 16487676 [TBL] [Abstract][Full Text] [Related]
8. Methylated genes as new cancer biomarkers. Duffy MJ; Napieralski R; Martens JW; Span PN; Spyratos F; Sweep FC; Brunner N; Foekens JA; Schmitt M; Eur J Cancer; 2009 Feb; 45(3):335-46. PubMed ID: 19138839 [TBL] [Abstract][Full Text] [Related]
9. CpG island mapping by epigenome prediction. Bock C; Walter J; Paulsen M; Lengauer T PLoS Comput Biol; 2007 Jun; 3(6):e110. PubMed ID: 17559301 [TBL] [Abstract][Full Text] [Related]
10. Identification of PRTFDC1 silencing and aberrant promoter methylation of GPR150, ITGA8 and HOXD11 in ovarian cancers. Cai LY; Abe M; Izumi S; Imura M; Yasugi T; Ushijima T Life Sci; 2007 Mar; 80(16):1458-65. PubMed ID: 17303177 [TBL] [Abstract][Full Text] [Related]
11. Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Feng W; Marquez RT; Lu Z; Liu J; Lu KH; Issa JP; Fishman DM; Yu Y; Bast RC Cancer; 2008 Apr; 112(7):1489-502. PubMed ID: 18286529 [TBL] [Abstract][Full Text] [Related]
12. Identification of novel epigenetic markers for clear cell renal cell carcinoma. Dalgin GS; Drever M; Williams T; King T; DeLisi C; Liou LS J Urol; 2008 Sep; 180(3):1126-30. PubMed ID: 18639284 [TBL] [Abstract][Full Text] [Related]
13. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Parra G; Bradnam K; Korf I Bioinformatics; 2007 May; 23(9):1061-7. PubMed ID: 17332020 [TBL] [Abstract][Full Text] [Related]
14. Prognostic DNA methylation biomarkers in ovarian cancer. Wei SH; Balch C; Paik HH; Kim YS; Baldwin RL; Liyanarachchi S; Li L; Wang Z; Wan JC; Davuluri RV; Karlan BY; Gifford G; Brown R; Kim S; Huang TH; Nephew KP Clin Cancer Res; 2006 May; 12(9):2788-94. PubMed ID: 16675572 [TBL] [Abstract][Full Text] [Related]
15. Aberrant DNA methylation profile and frequent methylation of KLK10 and OXGR1 genes in hepatocellular carcinoma. Lu CY; Hsieh SY; Lu YJ; Wu CS; Chen LC; Lo SJ; Wu CT; Chou MY; Huang TH; Chang YS Genes Chromosomes Cancer; 2009 Dec; 48(12):1057-68. PubMed ID: 19760608 [TBL] [Abstract][Full Text] [Related]
16. A graph-based approach to systematically reconstruct human transcriptional regulatory modules. Yan X; Mehan MR; Huang Y; Waterman MS; Yu PS; Zhou XJ Bioinformatics; 2007 Jul; 23(13):i577-86. PubMed ID: 17646346 [TBL] [Abstract][Full Text] [Related]
17. DNA methylation profiling of ovarian carcinomas and their in vitro models identifies HOXA9, HOXB5, SCGB3A1, and CRABP1 as novel targets. Wu Q; Lothe RA; Ahlquist T; Silins I; Tropé CG; Micci F; Nesland JM; Suo Z; Lind GE Mol Cancer; 2007 Jul; 6():45. PubMed ID: 17623056 [TBL] [Abstract][Full Text] [Related]
18. Identification of aberrant chromosomal regions from gene expression microarray studies applied to human breast cancer. Buness A; Kuner R; Ruschhaupt M; Poustka A; Sültmann H; Tresch A Bioinformatics; 2007 Sep; 23(17):2273-80. PubMed ID: 17599933 [TBL] [Abstract][Full Text] [Related]