BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 17148511)

  • 1. Genomic sweeping for hypermethylated genes.
    Goh L; Murphy SK; Muhkerjee S; Furey TS
    Bioinformatics; 2007 Feb; 23(3):281-8. PubMed ID: 17148511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting methylation status of CpG islands in the human brain.
    Fang F; Fan S; Zhang X; Zhang MQ
    Bioinformatics; 2006 Sep; 22(18):2204-9. PubMed ID: 16837523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PRIMEGENS-v2: genome-wide primer design for analyzing DNA methylation patterns of CpG islands.
    Srivastava GP; Guo J; Shi H; Xu D
    Bioinformatics; 2008 Sep; 24(17):1837-42. PubMed ID: 18579568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CpG island methylator phenotype correlates with long-range epigenetic silencing in colorectal cancer.
    Karpinski P; Ramsey D; Grzebieniak Z; Sasiadek MM; Blin N
    Mol Cancer Res; 2008 Apr; 6(4):585-91. PubMed ID: 18403637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting novel hypermethylated genes in breast cancer benefiting from feature selection.
    Lv J; Su J; Wang F; Qi Y; Liu H; Zhang Y
    Comput Biol Med; 2010 Feb; 40(2):159-67. PubMed ID: 20044084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formamide as a denaturant for bisulfite conversion of genomic DNA: Bisulfite sequencing of the GSTPi and RARbeta2 genes of 43 formalin-fixed paraffin-embedded prostate cancer specimens.
    Zon G; Barker MA; Kaur P; Groshen S; Jones LW; Imam SA; Boyd VL
    Anal Biochem; 2009 Sep; 392(2):117-25. PubMed ID: 19505431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA motifs associated with aberrant CpG island methylation.
    Feltus FA; Lee EK; Costello JF; Plass C; Vertino PM
    Genomics; 2006 May; 87(5):572-9. PubMed ID: 16487676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylated genes as new cancer biomarkers.
    Duffy MJ; Napieralski R; Martens JW; Span PN; Spyratos F; Sweep FC; Brunner N; Foekens JA; Schmitt M;
    Eur J Cancer; 2009 Feb; 45(3):335-46. PubMed ID: 19138839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CpG island mapping by epigenome prediction.
    Bock C; Walter J; Paulsen M; Lengauer T
    PLoS Comput Biol; 2007 Jun; 3(6):e110. PubMed ID: 17559301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of PRTFDC1 silencing and aberrant promoter methylation of GPR150, ITGA8 and HOXD11 in ovarian cancers.
    Cai LY; Abe M; Izumi S; Imura M; Yasugi T; Ushijima T
    Life Sci; 2007 Mar; 80(16):1458-65. PubMed ID: 17303177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation.
    Feng W; Marquez RT; Lu Z; Liu J; Lu KH; Issa JP; Fishman DM; Yu Y; Bast RC
    Cancer; 2008 Apr; 112(7):1489-502. PubMed ID: 18286529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of novel epigenetic markers for clear cell renal cell carcinoma.
    Dalgin GS; Drever M; Williams T; King T; DeLisi C; Liou LS
    J Urol; 2008 Sep; 180(3):1126-30. PubMed ID: 18639284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes.
    Parra G; Bradnam K; Korf I
    Bioinformatics; 2007 May; 23(9):1061-7. PubMed ID: 17332020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prognostic DNA methylation biomarkers in ovarian cancer.
    Wei SH; Balch C; Paik HH; Kim YS; Baldwin RL; Liyanarachchi S; Li L; Wang Z; Wan JC; Davuluri RV; Karlan BY; Gifford G; Brown R; Kim S; Huang TH; Nephew KP
    Clin Cancer Res; 2006 May; 12(9):2788-94. PubMed ID: 16675572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberrant DNA methylation profile and frequent methylation of KLK10 and OXGR1 genes in hepatocellular carcinoma.
    Lu CY; Hsieh SY; Lu YJ; Wu CS; Chen LC; Lo SJ; Wu CT; Chou MY; Huang TH; Chang YS
    Genes Chromosomes Cancer; 2009 Dec; 48(12):1057-68. PubMed ID: 19760608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A graph-based approach to systematically reconstruct human transcriptional regulatory modules.
    Yan X; Mehan MR; Huang Y; Waterman MS; Yu PS; Zhou XJ
    Bioinformatics; 2007 Jul; 23(13):i577-86. PubMed ID: 17646346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA methylation profiling of ovarian carcinomas and their in vitro models identifies HOXA9, HOXB5, SCGB3A1, and CRABP1 as novel targets.
    Wu Q; Lothe RA; Ahlquist T; Silins I; Tropé CG; Micci F; Nesland JM; Suo Z; Lind GE
    Mol Cancer; 2007 Jul; 6():45. PubMed ID: 17623056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of aberrant chromosomal regions from gene expression microarray studies applied to human breast cancer.
    Buness A; Kuner R; Ruschhaupt M; Poustka A; Sültmann H; Tresch A
    Bioinformatics; 2007 Sep; 23(17):2273-80. PubMed ID: 17599933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RBR: library-less repeat detection for ESTs.
    Malde K; Schneeberger K; Coward E; Jonassen I
    Bioinformatics; 2006 Sep; 22(18):2232-6. PubMed ID: 16837527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA methylation markers of surfactant proteins in lung cancer.
    Lin Z; Thomas NJ; Bibikova M; Seifart C; Wang Y; Guo X; Wang G; Vollmer E; Goldmann T; Garcia EW; Zhou L; Fan JB; Floros J
    Int J Oncol; 2007 Jul; 31(1):181-91. PubMed ID: 17549420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.