BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 17148673)

  • 21. Loss of the receptor tyrosine kinase Axl leads to enhanced inflammation in the CNS and delayed removal of myelin debris during experimental autoimmune encephalomyelitis.
    Weinger JG; Brosnan CF; Loudig O; Goldberg MF; Macian F; Arnett HA; Prieto AL; Tsiperson V; Shafit-Zagardo B
    J Neuroinflammation; 2011 May; 8():49. PubMed ID: 21569627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cathepsin C modulates myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis.
    Durose WW; Shimizu T; Li J; Abe M; Sakimura K; Chetsawang B; Tanaka KF; Suzumura A; Tohyama K; Ikenaka K
    J Neurochem; 2019 Feb; 148(3):413-425. PubMed ID: 30152001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. B-cell-deficient mice develop experimental allergic encephalomyelitis with demyelination after myelin oligodendrocyte glycoprotein sensitization.
    Hjelmström P; Juedes AE; Fjell J; Ruddle NH
    J Immunol; 1998 Nov; 161(9):4480-3. PubMed ID: 9794370
    [TBL] [Abstract][Full Text] [Related]  

  • 24. IL-6-deficient mice are resistant to the induction of experimental autoimmune encephalomyelitis provoked by myelin oligodendrocyte glycoprotein.
    Okuda Y; Sakoda S; Bernard CC; Fujimura H; Saeki Y; Kishimoto T; Yanagihara T
    Int Immunol; 1998 May; 10(5):703-8. PubMed ID: 9645618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential expression of matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase genes in the mouse central nervous system in normal and inflammatory states.
    Pagenstecher A; Stalder AK; Kincaid CL; Shapiro SD; Campbell IL
    Am J Pathol; 1998 Mar; 152(3):729-41. PubMed ID: 9502415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tyrosine kinase 2 plays critical roles in the pathogenic CD4 T cell responses for the development of experimental autoimmune encephalomyelitis.
    Oyamada A; Ikebe H; Itsumi M; Saiwai H; Okada S; Shimoda K; Iwakura Y; Nakayama KI; Iwamoto Y; Yoshikai Y; Yamada H
    J Immunol; 2009 Dec; 183(11):7539-46. PubMed ID: 19917699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myelin/oligodendrocyte glycoprotein-deficient (MOG-deficient) mice reveal lack of immune tolerance to MOG in wild-type mice.
    Delarasse C; Daubas P; Mars LT; Vizler C; Litzenburger T; Iglesias A; Bauer J; Della Gaspera B; Schubart A; Decker L; Dimitri D; Roussel G; Dierich A; Amor S; Dautigny A; Liblau R; Pham-Dinh D
    J Clin Invest; 2003 Aug; 112(4):544-53. PubMed ID: 12925695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Astrocytes play a key role in EAE pathophysiology by orchestrating in the CNS the inflammatory response of resident and peripheral immune cells and by suppressing remyelination.
    Brambilla R; Morton PD; Ashbaugh JJ; Karmally S; Lambertsen KL; Bethea JR
    Glia; 2014 Mar; 62(3):452-67. PubMed ID: 24357067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blockade of the kinin receptor B1 protects from autoimmune CNS disease by reducing leukocyte trafficking.
    Göbel K; Pankratz S; Schneider-Hohendorf T; Bittner S; Schuhmann MK; Langer HF; Stoll G; Wiendl H; Kleinschnitz C; Meuth SG
    J Autoimmun; 2011 Mar; 36(2):106-14. PubMed ID: 21216565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fas has a crucial role in the progression of experimental autoimmune encephalomyelitis.
    Okuda Y; Bernard CC; Fujimura H; Yanagihara T; Sakoda S
    Mol Immunol; 1998 Apr; 35(5):317-26. PubMed ID: 9747891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of System Xc(-) Transporter Attenuates Autoimmune Inflammatory Demyelination.
    Evonuk KS; Baker BJ; Doyle RE; Moseley CE; Sestero CM; Johnston BP; De Sarno P; Tang A; Gembitsky I; Hewett SJ; Weaver CT; Raman C; DeSilva TM
    J Immunol; 2015 Jul; 195(2):450-463. PubMed ID: 26071560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oligodendrocyte-Specific Deletion of
    Rajendran R; Rajendran V; Giraldo-Velasquez M; Megalofonou FF; Gurski F; Stadelmann C; Karnati S; Berghoff M
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Loss of Allograft Inflammatory Factor-1 Ameliorates Experimental Autoimmune Encephalomyelitis by Limiting Encephalitogenic CD4 T-Cell Expansion.
    Chinnasamy P; Lutz SE; Riascos-Bernal DF; Jeganathan V; Casimiro I; Brosnan CF; Sibinga NE
    Mol Med; 2015 Jan; 21(1):233-41. PubMed ID: 25569805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of CD8+ T cells and their local interaction with CD4+ T cells in myelin oligodendrocyte glycoprotein35-55-induced experimental autoimmune encephalomyelitis.
    Leuenberger T; Paterka M; Reuter E; Herz J; Niesner RA; Radbruch H; Bopp T; Zipp F; Siffrin V
    J Immunol; 2013 Nov; 191(10):4960-8. PubMed ID: 24123686
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Astrocyte CCL2 sustains immune cell infiltration in chronic experimental autoimmune encephalomyelitis.
    Kim RY; Hoffman AS; Itoh N; Ao Y; Spence R; Sofroniew MV; Voskuhl RR
    J Neuroimmunol; 2014 Sep; 274(1-2):53-61. PubMed ID: 25005117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. B cell recognition of myelin oligodendrocyte glycoprotein autoantigen depends on immunization with protein rather than short peptide, while B cell invasion of the CNS in autoimmunity does not.
    Dang AK; Jain RW; Craig HC; Kerfoot SM
    J Neuroimmunol; 2015 Jan; 278():73-84. PubMed ID: 25595255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Region-specific regulation of inflammation and pathogenesis in experimental autoimmune encephalomyelitis.
    Archambault AS; Sim J; McCandless EE; Klein RS; Russell JH
    J Neuroimmunol; 2006 Dec; 181(1-2):122-32. PubMed ID: 17030428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conditioned Medium from the Stem Cells of Human Exfoliated Deciduous Teeth Ameliorates Experimental Autoimmune Encephalomyelitis.
    Shimojima C; Takeuchi H; Jin S; Parajuli B; Hattori H; Suzumura A; Hibi H; Ueda M; Yamamoto A
    J Immunol; 2016 May; 196(10):4164-71. PubMed ID: 27053763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis.
    Becher B; Durell BG; Noelle RJ
    J Clin Invest; 2003 Oct; 112(8):1186-91. PubMed ID: 14561703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein tyrosine phosphatase σ regulates autoimmune encephalomyelitis development.
    Ohtake Y; Kong W; Hussain R; Horiuchi M; Tremblay ML; Ganea D; Li S
    Brain Behav Immun; 2017 Oct; 65():111-124. PubMed ID: 28559011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.