BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 17148825)

  • 1. Contrast-transfer improvement for electrode displacement elastography.
    Bharat S; Varghese T
    Phys Med Biol; 2006 Dec; 51(24):6403-18. PubMed ID: 17148825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative evaluation of strain-based and model-based modulus elastography.
    Doyley MM; Srinivasan S; Pendergrass SA; Wu Z; Ophir J
    Ultrasound Med Biol; 2005 Jun; 31(6):787-802. PubMed ID: 15936495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography.
    Thitaikumar A; Krouskop TA; Ophir J
    Phys Med Biol; 2007 Jan; 52(1):13-28. PubMed ID: 17183125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radio frequency data.
    Lopata RG; Nillesen MM; Hansen HH; Gerrits IH; Thijssen JM; de Korte CL
    Ultrasound Med Biol; 2009 May; 35(5):796-812. PubMed ID: 19282094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the performance of model-based elastography by incorporating additional a priori information in the modulus image reconstruction process.
    Doyley MM; Srinivasan S; Dimidenko E; Soni N; Ophir J
    Phys Med Biol; 2006 Jan; 51(1):95-112. PubMed ID: 16357433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelet denoising of displacement estimates in elastography.
    Techavipoo U; Varghese T
    Ultrasound Med Biol; 2004 Apr; 30(4):477-91. PubMed ID: 15121250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient elastography using impulsive ultrasound radiation force: a preliminary comparison with surface palpation elastography.
    Melodelima D; Bamber JC; Duck FA; Shipley JA
    Ultrasound Med Biol; 2007 Jun; 33(6):959-69. PubMed ID: 17445967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound frame rate requirements for cardiac elastography: experimental and in vivo results.
    Chen H; Varghese T; Rahko PS; Zagzebski JA
    Ultrasonics; 2009 Jan; 49(1):98-111. PubMed ID: 18657839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements.
    Elkateb Hachemi M; Callé S; Remenieras JP
    Ultrasonics; 2006 Dec; 44 Suppl 1():e221-5. PubMed ID: 16843510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying the mechanical properties of tissue by ultrasound strain imaging.
    Turgay E; Salcudean S; Rohling R
    Ultrasound Med Biol; 2006 Feb; 32(2):221-35. PubMed ID: 16464668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise reduction using spatial-angular compounding for elastography.
    Techavipoo U; Chen Q; Varghese T; Zagzebski JA; Madsen EL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):510-20. PubMed ID: 15217229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechanical model to compute elastic modulus of tissues for harmonic motion imaging.
    Shan B; Pelegri AA; Maleke C; Konofagou EE
    J Biomech; 2008 Jul; 41(10):2150-8. PubMed ID: 18571182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards an acoustic model-based poroelastic imaging method: II. experimental investigation.
    Berry GP; Bamber JC; Miller NR; Barbone PE; Bush NL; Armstrong CG
    Ultrasound Med Biol; 2006 Dec; 32(12):1869-85. PubMed ID: 17169699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the differences between two-dimensional and three-dimensional simulations for assessing elastographic image quality: a simulation study.
    Patil AV; Krouskop TA; Ophir J; Srinivasan S
    Ultrasound Med Biol; 2008 Jul; 34(7):1129-38. PubMed ID: 18343016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation analysis of three-dimensional strain imaging using ultrasound two-dimensional array transducers.
    Rao M; Varghese T
    J Acoust Soc Am; 2008 Sep; 124(3):1858-65. PubMed ID: 19045676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principal component analysis of shear strain effects.
    Chen H; Varghese T
    Ultrasonics; 2009 May; 49(4-5):472-83. PubMed ID: 19201435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic parameter estimation based on spectral analysis.
    Eskandari H; Salcudean SE; Rohling R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1611-25. PubMed ID: 18986951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative viscoelastic parameters measured by harmonic motion imaging.
    Vappou J; Maleke C; Konofagou EE
    Phys Med Biol; 2009 Jun; 54(11):3579-94. PubMed ID: 19454785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastographic contrast generation in optical coherence tomography from a localized shear stress.
    Grimwood A; Garcia L; Bamber J; Holmes J; Woolliams P; Tomlins P; Pankhurst QA
    Phys Med Biol; 2010 Sep; 55(18):5515-28. PubMed ID: 20798457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear modulus reconstruction in dynamic elastography: time harmonic case.
    Park E; Maniatty AM
    Phys Med Biol; 2006 Aug; 51(15):3697-721. PubMed ID: 16861775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.