These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 17149489)

  • 1. Effects of surface site distribution and dielectric discontinuity on the charging behavior of nanoparticles: a grand canonical Monte Carlo study.
    Seijo M; Ulrich S; Filella M; Buffle J; Stoll S
    Phys Chem Chem Phys; 2006 Dec; 8(48):5679-88. PubMed ID: 17149489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the surface charge evolution of spherical nanoparticles by considering dielectric discontinuity effects at the solid/electrolyte solution interface.
    Seijo M; Ulrich S; Filella M; Buffle J; Stoll S
    J Colloid Interface Sci; 2008 Jun; 322(2):660-8. PubMed ID: 18387618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface charging behavior of nanoparticles by considering site distribution and density, dielectric constant and pH changes--a Monte Carlo approach.
    Clavier A; Seijo M; Carnal F; Stoll S
    Phys Chem Chem Phys; 2015 Feb; 17(6):4346-53. PubMed ID: 25579770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric discontinuity effects on the adsorption of a linear polyelectrolyte at the surface of a neutral nanoparticle.
    Seijo M; Pohl M; Ulrich S; Stoll S
    J Chem Phys; 2009 Nov; 131(17):174704. PubMed ID: 19895032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective interaction between charged nanoparticles and DNA.
    Paillusson F; Dahirel V; Jardat M; Victor JM; Barbi M
    Phys Chem Chem Phys; 2011 Jul; 13(27):12603-13. PubMed ID: 21670822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo determination of mixed electrolytes next to a planar dielectric interface with different surface charge distributions.
    Wang ZY; Ma YQ
    J Chem Phys; 2009 Dec; 131(24):244715. PubMed ID: 20059107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of head group charges, ionic sizes, and dielectric images on charge inversion: a Monte Carlo simulation study.
    Wang ZY; Ma YQ
    J Phys Chem B; 2010 Oct; 114(42):13386-92. PubMed ID: 20925354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of weak polyelectrolytes on charged nanoparticles. Impact of salt valency, pH, and nanoparticle charge density. Monte Carlo simulations.
    Carnal F; Stoll S
    J Phys Chem B; 2011 Oct; 115(42):12007-18. PubMed ID: 21902229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implications of a high dielectric constant in proteins.
    Lund M; Jönsson B; Woodward CE
    J Chem Phys; 2007 Jun; 126(22):225103. PubMed ID: 17581083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of the assembly of gold nanoparticles on DNA fragments via electrostatic interaction.
    Komarov PV; Zherenkova LV; Khalatur PG
    J Chem Phys; 2008 Mar; 128(12):124909. PubMed ID: 18376975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Surface and Salt Properties on the Ion Distribution around Spherical Nanoparticles: Monte Carlo Simulations.
    Clavier A; Carnal F; Stoll S
    J Phys Chem B; 2016 Aug; 120(32):7988-97. PubMed ID: 27459187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attraction between negatively charged surfaces mediated by spherical counterions with quadrupolar charge distribution.
    Urbanija J; Bohinc K; Bellen A; Maset S; Iglic A; Kralj-Iglic V; Kumar PB
    J Chem Phys; 2008 Sep; 129(10):105101. PubMed ID: 19044938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A numerical study of the electrostatic properties of two finite-width charged dielectric slabs in water.
    Jho YS; Kim MW; Pincus PA; Brown FL
    J Chem Phys; 2008 Oct; 129(13):134511. PubMed ID: 19045109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and theoretical evidence of overcharging of calcium silicate hydrate.
    Labbez C; Nonat A; Pochard I; Jönsson B
    J Colloid Interface Sci; 2007 May; 309(2):303-7. PubMed ID: 17346727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrolytes in porous electrodes: Effects of the pore size and the dielectric constant of the medium.
    Kiyohara K; Sugino T; Asaka K
    J Chem Phys; 2010 Apr; 132(14):144705. PubMed ID: 20406008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion-mediated interactions between charged and neutral nanoparticles.
    Dahirel V; Jardat M; Dufrêche JF; Turq P
    Phys Chem Chem Phys; 2008 Sep; 10(33):5147-55. PubMed ID: 18701965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of discrete surface charges on the force between charged surfaces.
    Khan MO; Petris S; Chan DY
    J Chem Phys; 2005 Mar; 122(10):104705. PubMed ID: 15836343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between charged surfaces mediated by rodlike counterions: the influence of discrete charge distribution in the solution and on the surfaces.
    Grime JM; Khan MO; Bohinc K
    Langmuir; 2010 May; 26(9):6343-9. PubMed ID: 20070107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of heterogeneously charged nanoparticles on a variably charged surface by the extended surface complexation approach: charge regulation, chemical heterogeneity, and surface complexation.
    Saito T; Koopal LK; Nagasaki S; Tanaka S
    J Phys Chem B; 2008 Feb; 112(5):1339-49. PubMed ID: 18189380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulations of amphiphilic nanoparticle self-assembly.
    Davis JR; Panagiotopoulos AZ
    J Chem Phys; 2008 Nov; 129(19):194706. PubMed ID: 19026080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.