BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 17149593)

  • 21. Continuous cell movements rearrange anatomical structures in intact sponges.
    Bond C
    J Exp Zool; 1992 Sep; 263(3):284-302. PubMed ID: 1453156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and characterization of human gastric cell lines with stem cell phenotypes.
    Yang YC; Wang SW; Hung HY; Chang CC; Wu IC; Huang YL; Lin TM; Tsai JL; Chen A; Kuo FC; Wang WM; Wu DC
    J Gastroenterol Hepatol; 2007 Sep; 22(9):1460-8. PubMed ID: 17645461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sulfated polysaccharides from marine sponges: conspicuous distribution among different cell types and involvement on formation of in vitro cell aggregates.
    Vilanova E; Coutinho C; Maia G; Mourão PA
    Cell Tissue Res; 2010 Jun; 340(3):523-31. PubMed ID: 20376489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential of sponges and microalgae for marine biotechnology.
    Wijffels RH
    Trends Biotechnol; 2008 Jan; 26(1):26-31. PubMed ID: 18037175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding.
    De Goeij JM; De Kluijver A; Van Duyl FC; Vacelet J; Wijffels RH; De Goeij AF; Cleutjens JP; Schutte B
    J Exp Biol; 2009 Dec; 212(Pt 23):3892-900. PubMed ID: 19915132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Partitioning of genetically distinct cell populations in chimeric juveniles of the sponge Amphimedon queenslandica.
    Gauthier M; Degnan BM
    Dev Comp Immunol; 2008; 32(11):1270-80. PubMed ID: 18514309
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular phylogeny and modular structure of hybrid NRPS/PKS gene fragment of Pseudoalteromonas sp. NJ6-3-2 isolated from marine sponge Hymeniacidon perleve.
    Zhu P; Zheng Y; You Y; Yan X; Shao J
    J Microbiol Biotechnol; 2009 Mar; 19(3):229-37. PubMed ID: 19349747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sponge-cell culture? A molecular identification method for sponge cells.
    Sipkema D; Heilig HG; Akkermans AD; Osinga R; Tramper J; Wijffels RH
    Mar Biotechnol (NY); 2003; 5(5):443-9. PubMed ID: 14730427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sustainable production of bioactive compounds from sponges: primmorphs as bioreactors.
    Schröder HC; Brümmer F; Fattorusso E; Aiello A; Menna M; de Rosa S; Batel R; Müller WE
    Prog Mol Subcell Biol; 2003; 37():163-97. PubMed ID: 15825644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of the bacterial symbiont Entotheonella sp. in the mesohyl of the marine sponge Discodermia sp.
    Brück WM; Sennett SH; Pomponi SA; Willenz P; McCarthy PJ
    ISME J; 2008 Mar; 2(3):335-9. PubMed ID: 18256706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of cultures of the marine sponge Hymeniacidon perleve for genotoxicity assessment using the alkaline comet assay.
    Akpiri RU; Konya RS; Hodges NJ
    Environ Toxicol Chem; 2017 Dec; 36(12):3314-3323. PubMed ID: 28691780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular aspects of allograft rejection in marine sponges of the genus Polymastia.
    Van de Vyver G; Barbieux B
    J Exp Zool; 1983 Jul; 227(1):1-7. PubMed ID: 6619759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diversity of fungal isolates from three Hawaiian marine sponges.
    Li Q; Wang G
    Microbiol Res; 2009; 164(2):233-41. PubMed ID: 17681460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sustainable use of marine resources: cultivation of sponges.
    Brümmer F; Nickel M
    Prog Mol Subcell Biol; 2003; 37():143-62. PubMed ID: 15825643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions.
    Uriz MJ; Turon X; Becerro MA; Agell G
    Microsc Res Tech; 2003 Nov; 62(4):279-99. PubMed ID: 14534903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intra-epithelial spicules in a homosclerophorid sponge.
    Maldonado M; Riesgo A
    Cell Tissue Res; 2007 Jun; 328(3):639-50. PubMed ID: 17340151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pluripotency and the origin of animal multicellularity.
    Sogabe S; Hatleberg WL; Kocot KM; Say TE; Stoupin D; Roper KE; Fernandez-Valverde SL; Degnan SM; Degnan BM
    Nature; 2019 Jun; 570(7762):519-522. PubMed ID: 31189954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [In vitro bromodeoxyuridine labelling of rabbit adipose-derived stromal stem cells].
    Li H; Gao J; Lu F; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Jan; 22(1):97-101. PubMed ID: 18361249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellular location of (2R, 3R, 7Z)-2-aminotetradec-7-ene-1, 3-diol, a potent antimicrobial metabolite produced by the Caribbean sponge Haliclona vansoesti.
    Richelle-Maurer E; Braekman JC; De Kluijver MJ; Gomez R; Van de Vyver G; Van Soest RW; Devijver C
    Cell Tissue Res; 2001 Oct; 306(1):157-65. PubMed ID: 11683177
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The fate of larval flagellated cells during metamorphosis of the sponge Halisarca dujardini.
    Mukhina YI; Kumeiko VV; Podgornaya OI; Efremova SM
    Int J Dev Biol; 2006; 50(6):533-41. PubMed ID: 16741868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.