These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 17149905)

  • 1. Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/microstructures.
    Zhang S; Li W; Li C; Chen J
    J Phys Chem B; 2006 Dec; 110(49):24855-63. PubMed ID: 17149905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha-CuV2O6 nanowires: hydrothermal synthesis and primary lithium battery application.
    Ma H; Zhang S; Ji W; Tao Z; Chen J
    J Am Chem Soc; 2008 Apr; 130(15):5361-7. PubMed ID: 18366175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superlong beta-AgVO3 nanoribbons: high-yield synthesis by a pyridine-assisted solution approach, their stability, electrical and electrochemical properties.
    Song JM; Lin YZ; Yao HB; Fan FJ; Li XG; Yu SH
    ACS Nano; 2009 Mar; 3(3):653-60. PubMed ID: 19231822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vapor-transportation preparation and reversible lithium intercalation/deintercalation of alpha-MoO3 microrods.
    Li W; Cheng F; Tao Z; Chen J
    J Phys Chem B; 2006 Jan; 110(1):119-24. PubMed ID: 16471508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries.
    Cheng F; Zhao J; Song W; Li C; Ma H; Chen J; Shen P
    Inorg Chem; 2006 Mar; 45(5):2038-44. PubMed ID: 16499364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of self-bridged silver vanadium oxide/CNTs composite and its enhanced lithium storage performance.
    Liang L; Liu H; Yang W
    Nanoscale; 2013 Feb; 5(3):1026-33. PubMed ID: 23254253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate-assisted self-organization of radial β-AgVO₃ nanowire clusters for high rate rechargeable lithium batteries.
    Han C; Pi Y; An Q; Mai L; Xie J; Xu X; Xu L; Zhao Y; Niu C; Khan AM; He X
    Nano Lett; 2012 Sep; 12(9):4668-73. PubMed ID: 22862740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective synthesis and characterization of single-crystal silver molybdate/tungstate nanowires by a hydrothermal process.
    Cui X; Yu SH; Li L; Biao L; Li H; Mo M; Liu XM
    Chemistry; 2004 Jan; 10(1):218-23. PubMed ID: 14695566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries.
    Shim HW; Lee DK; Cho IS; Hong KS; Kim DW
    Nanotechnology; 2010 Jun; 21(25):255706. PubMed ID: 20516576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structural conversion from α-AgVO
    McNulty D; Ramasse Q; O'Dwyer C
    Nanoscale; 2016 Sep; 8(36):16266-16275. PubMed ID: 27722389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large scale preparation of beta-AgVO3 nanowires using a novel sonochemical route.
    Mao C; Wu X; Zhu JJ
    J Nanosci Nanotechnol; 2008 Jun; 8(6):3203-7. PubMed ID: 18681069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of cobalt ion-based coordination polymer nanowires and their conversion into porous Co3O4 nanowires with good lithium storage properties.
    Li C; Yin X; Chen L; Li Q; Wang T
    Chemistry; 2010 May; 16(17):5215-21. PubMed ID: 20235237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries.
    Muraliganth T; Vadivel Murugan A; Manthiram A
    Chem Commun (Camb); 2009 Dec; (47):7360-2. PubMed ID: 20024228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, structural characterization, and electronic structure of single-crystalline Cu(x)V2O5 nanowires.
    Patridge CJ; Jaye C; Zhang H; Marschilok AC; Fischer DA; Takeuchi ES; Banerjee S
    Inorg Chem; 2009 Apr; 48(7):3145-52. PubMed ID: 19260681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties.
    Li Q; Zhang J; Liu B; Li M; Liu R; Li X; Ma H; Yu S; Wang L; Zou Y; Li Z; Zou B; Cui T; Zou G
    Inorg Chem; 2008 Nov; 47(21):9870-3. PubMed ID: 18837547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoporous nickel oxide nanowires: hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance.
    Su D; Kim HS; Kim WS; Wang G
    Chemistry; 2012 Jun; 18(26):8224-9. PubMed ID: 22589171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sb2S3 with various nanostructures: controllable synthesis, formation mechanism, and electrochemical performance toward lithium storage.
    Ma J; Duan X; Lian J; Kim T; Peng P; Liu X; Liu Z; Li H; Zheng W
    Chemistry; 2010 Nov; 16(44):13210-7. PubMed ID: 20931571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1-Dimensional AgVO3 nanowires hybrid with 2-dimensional graphene nanosheets to create 3-dimensional composite aerogels and their improved electrochemical properties.
    Liang L; Xu Y; Lei Y; Liu H
    Nanoscale; 2014 Apr; 6(7):3536-9. PubMed ID: 24589742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures.
    Wang Q; Wen Z; Li J
    Inorg Chem; 2006 Aug; 45(17):6944-9. PubMed ID: 16903753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.