These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 17149927)
1. Modeling the electrophoresis of peptides and proteins: improvements in the "bead method" to include ion relaxation and "finite size effects". Xin Y; Hess R; Ho N; Allison S J Phys Chem B; 2006 Dec; 110(49):25033-44. PubMed ID: 17149927 [TBL] [Abstract][Full Text] [Related]
2. Modeling the electrophoretic mobility and diffusion of weakly charged peptides. Xin Y; Mitchell H; Cameron H; Allison SA J Phys Chem B; 2006 Jan; 110(2):1038-45. PubMed ID: 16471640 [TBL] [Abstract][Full Text] [Related]
3. Using electrophoretic mobility and bead modeling to characterize the charge and secondary structure of peptides. Pei H; Xin Y; Allison SA J Sep Sci; 2008 Feb; 31(3):555-64. PubMed ID: 18219654 [TBL] [Abstract][Full Text] [Related]
4. The free solution electrophoretic mobility of peptides by a bead modeling methodology. Pei H; Allison S J Chromatogr A; 2009 Mar; 1216(10):1908-16. PubMed ID: 18823631 [TBL] [Abstract][Full Text] [Related]
5. Exploring the evaluation of net charge, hydrodynamic size and shape of peptides through experimental electrophoretic mobilities obtained from CZE. Piaggio MV; Peirotti MB; Deiber JA Electrophoresis; 2006 Dec; 27(23):4631-47. PubMed ID: 17136715 [TBL] [Abstract][Full Text] [Related]
6. Electrophoresis of spheres with uniform zeta potential in a gel modeled as an effective medium. Allison SA; Xin Y; Pei H J Colloid Interface Sci; 2007 Sep; 313(1):328-37. PubMed ID: 17509603 [TBL] [Abstract][Full Text] [Related]
7. Modeling the free solution and gel electrophoresis of biopolymers: the bead array-effective medium model. Allison SA; Pei H; Xin Y Biopolymers; 2007 Oct 5-15; 87(2-3):102-14. PubMed ID: 17636508 [TBL] [Abstract][Full Text] [Related]
8. Effect of background electrolyte on the estimation of protein hydrodynamic radius and net charge through capillary zone electrophoresis. Piaggio MV; Peirotti MB; Deiber JA Electrophoresis; 2005 Sep; 26(17):3232-46. PubMed ID: 16097025 [TBL] [Abstract][Full Text] [Related]
9. Artificial neural network modeling of peptide mobility and peptide mapping in capillary zone electrophoresis. Jalali-Heravi M; Shen Y; Hassanisadi M; Khaledi MG J Chromatogr A; 2005 Nov; 1096(1-2):58-68. PubMed ID: 16216258 [TBL] [Abstract][Full Text] [Related]
10. Modeling the electrophoresis of oligolysines. Allison SA; Perrin C; Cottet H Electrophoresis; 2011 Oct; 32(20):2788-96. PubMed ID: 21953332 [TBL] [Abstract][Full Text] [Related]
11. Competitive adsorption of model charged proteins: the effect of total charge and charge distribution. Gong P; Szleifer I J Colloid Interface Sci; 2004 Oct; 278(1):81-90. PubMed ID: 15313640 [TBL] [Abstract][Full Text] [Related]
12. Electrophoretic mobility of a spherical colloidal particle in a salt-free medium. Ohshima H J Colloid Interface Sci; 2002 Apr; 248(2):499-503. PubMed ID: 16290556 [TBL] [Abstract][Full Text] [Related]
13. Specific ion effects on the electrophoretic mobility of small, highly charged peptides: a modeling study. Allison SA; Wu H; Bui TM; Dang L; Huynh GH; Nguyen T; Soegiarto L; Truong BC J Sep Sci; 2014 Sep; 37(17):2403-10. PubMed ID: 24958616 [TBL] [Abstract][Full Text] [Related]
14. The dependence of the electrophoretic mobility of small organic ions on ionic strength and complex formation. Allison SA; Pei H; Baek S; Brown J; Lee MY; Nguyen V; Twahir UT; Wu H Electrophoresis; 2010 Mar; 31(5):920-32. PubMed ID: 20191555 [TBL] [Abstract][Full Text] [Related]
15. Prediction of electrophoretic mobilities of peptides in capillary zone electrophoresis by quantitative structure-mobility relationships using the Offord model and artificial neural networks. Jalali-Heravi M; Shen Y; Hassanisadi M; Khaledi MG Electrophoresis; 2005 May; 26(10):1874-85. PubMed ID: 15825217 [TBL] [Abstract][Full Text] [Related]
16. Salt concentration and particle density dependence of electrophoretic mobilities of spherical colloids in aqueous suspension. Reiber H; Köller T; Palberg T; Carrique F; Ruiz Reina E; Piazza R J Colloid Interface Sci; 2007 May; 309(2):315-22. PubMed ID: 17331523 [TBL] [Abstract][Full Text] [Related]
17. Hydration, charge, size, and shape characteristics of peptides from their CZE analyses. Peirotti MB; Piaggio MV; Deiber JA J Sep Sci; 2008 Feb; 31(3):548-54. PubMed ID: 18266265 [TBL] [Abstract][Full Text] [Related]
18. Estimation of global structural and transport properties of peptides through the modeling of their CZE mobility data. Piaggio MV; Peirotti MB; Deiber JA J Sep Sci; 2010 Aug; 33(16):2423-9. PubMed ID: 20506428 [TBL] [Abstract][Full Text] [Related]
19. From small charged molecules to oligomers: a semiempirical approach to the modeling of actual mobility in free solution. Cottet H; Gareil P Electrophoresis; 2000 May; 21(8):1493-504. PubMed ID: 10832879 [TBL] [Abstract][Full Text] [Related]
20. Correlation of electrophoretic mobilities of proteins and peptides with their physicochemical properties. Basak SK; Ladisch MR Anal Biochem; 1995 Mar; 226(1):51-8. PubMed ID: 7785779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]