These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 17150301)

  • 1. Inferring rules of Escherichia coli translational efficiency using an artificial neural network.
    Mori K; Saito R; Kikuchi S; Tomita M
    Biosystems; 2007; 90(2):414-20. PubMed ID: 17150301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influences on gene expression in vivo by a Shine-Dalgarno sequence.
    Jin H; Zhao Q; Gonzalez de Valdivia EI; Ardell DH; Stenström M; Isaksson LA
    Mol Microbiol; 2006 Apr; 60(2):480-92. PubMed ID: 16573696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid promoter and portable Shine-Dalgarno regions of Escherichia coli.
    De Boer HA; Comstock LJ; Hui A; Wong E; Vasser M
    Biochem Soc Symp; 1983; 48():233-44. PubMed ID: 6400483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translation enhancement by optimized downstream box sequences in Escherichia coli and Mycobacterium smegmatis.
    Rush GJ; Steyn LM
    Biotechnol Lett; 2005 Feb; 27(3):173-9. PubMed ID: 15717126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing and enhancing mRNA translational efficiency in an Escherichia coli in vitro expression system.
    Voges D; Watzele M; Nemetz C; Wizemann S; Buchberger B
    Biochem Biophys Res Commun; 2004 May; 318(2):601-14. PubMed ID: 15120642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Escherichia coli mRNAs with strong Shine/Dalgarno sequences also contain 5' end sequences complementary to domain # 17 on the 16S ribosomal RNA.
    Golshani A; Krogan NJ; Xu J; Pacal M; Yang XC; Ivanov I; Providenti MA; Ganoza MC; Ivanov IG; AbouHaidar MG
    Biochem Biophys Res Commun; 2004 Apr; 316(4):978-83. PubMed ID: 15044080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translation initiation modeling and mutational analysis based on the 3(')-end of the Escherichia coli 16S rRNA sequence.
    Dawy Z; Morcos F; Weindl J; Mueller JC
    Biosystems; 2009 Apr; 96(1):58-64. PubMed ID: 19070645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative correlation between mRNA secondary structure around the region downstream of the initiation codon and translational efficiency in Escherichia coli.
    Seo SW; Yang J; Jung GY
    Biotechnol Bioeng; 2009 Oct; 104(3):611-6. PubMed ID: 19579224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of the leader region of mRNA for translation initiation of ColE2 Rep protein.
    Nagase T; Nishio SY; Itoh T
    Plasmid; 2007 Nov; 58(3):249-60. PubMed ID: 17720244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency of a novel non-Shine-Dalgarno and a Shine-Dalgarno consensus sequence to initiate translation in Escherichia coli of genes with different downstream box composition.
    Mironova RS; Xu J; AbouHaidar MG; Ivanov IG
    Microbiol Res; 1999 May; 154(1):35-41. PubMed ID: 10356795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-cistronic expression plasmids for high-level gene expression in Escherichia coli preventing translational initiation inhibition caused by the intramolecular local secondary structure of mRNA.
    Kimura S; Umemura T; Iyanagi T
    J Biochem; 2005 Apr; 137(4):523-33. PubMed ID: 15858177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservation of bacterial protein synthesis machinery: initiation and elongation in Mycobacterium smegmatis.
    Bruell CM; Eichholz C; Kubarenko A; Post V; Katunin VI; Hobbie SN; Rodnina MV; Böttger EC
    Biochemistry; 2008 Aug; 47(34):8828-39. PubMed ID: 18672904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.
    Hatfield GW; Roth DA
    Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of translation initiation sites in human mRNA sequences with AUG start codon in weak Kozak context: A neural network approach.
    Tikole S; Sankararamakrishnan R
    Biochem Biophys Res Commun; 2008 May; 369(4):1166-8. PubMed ID: 18342624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [New method of construction of artificial translational-coupled operons in bacterial chromosome].
    Gulevich AIu; Skorokhodova AIu; Ermishev VIu; Krylov AA; Minaeva NI; Polonskaia ZM; Zimenkov DV; Biriukova IV; Mashko SV
    Mol Biol (Mosk); 2009; 43(3):547-57. PubMed ID: 19548541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The highly efficient translation initiation region from the Escherichia coli rpsA gene lacks a shine-dalgarno element.
    Skorski P; Leroy P; Fayet O; Dreyfus M; Hermann-Le Denmat S
    J Bacteriol; 2006 Sep; 188(17):6277-85. PubMed ID: 16923895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coding potential prediction in Wolbachia using artificial neural networks.
    Lambros S; Panos I; Spiridon L
    In Silico Biol; 2007; 7(1):105-13. PubMed ID: 17688435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of cleavage-site patterns in protein precursor sequences with a perceptron-type neural network.
    Schneider G; Röhlk S; Wrede P
    Biochem Biophys Res Commun; 1993 Jul; 194(2):951-9. PubMed ID: 8343174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calliper randomization: an artificial neural network based analysis of E. coli ribosome binding sites.
    Nair TM
    J Biomol Struct Dyn; 1997 Dec; 15(3):611-7. PubMed ID: 9440007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome.
    Marzi S; Myasnikov AG; Serganov A; Ehresmann C; Romby P; Yusupov M; Klaholz BP
    Cell; 2007 Sep; 130(6):1019-31. PubMed ID: 17889647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.