These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 17150315)
1. Characterization of gene delivery in vitro and in vivo by the arginine peptide system. Kim HH; Choi HS; Yang JM; Shin S Int J Pharm; 2007 Apr; 335(1-2):70-78. PubMed ID: 17150315 [TBL] [Abstract][Full Text] [Related]
2. Different roles of cell surface and exogenous glycosaminoglycans in controlling gene delivery by arginine-rich peptides with varied distribution of arginines. Naik RJ; Chatterjee A; Ganguli M Biochim Biophys Acta; 2013 Jun; 1828(6):1484-93. PubMed ID: 23454086 [TBL] [Abstract][Full Text] [Related]
3. An insight into the gene delivery mechanism of the arginine peptide system: role of the peptide/DNA complex size. Choi HS; Kim HH; Yang JM; Shin S Biochim Biophys Acta; 2006 Nov; 1760(11):1604-12. PubMed ID: 17064849 [TBL] [Abstract][Full Text] [Related]
4. Exogenous chondroitin sulfate glycosaminoglycan associate with arginine-rich peptide-DNA complexes to alter their intracellular processing and gene delivery efficiency. Naik RJ; Sharma R; Nisakar D; Purohit G; Ganguli M Biochim Biophys Acta; 2015 Apr; 1848(4):1053-64. PubMed ID: 25637297 [TBL] [Abstract][Full Text] [Related]
6. Complexes of plasmid DNA with basic domain 47-57 of the HIV-1 Tat protein are transferred to mammalian cells by endocytosis-mediated pathways. Ignatovich IA; Dizhe EB; Pavlotskaya AV; Akifiev BN; Burov SV; Orlov SV; Perevozchikov AP J Biol Chem; 2003 Oct; 278(43):42625-36. PubMed ID: 12882958 [TBL] [Abstract][Full Text] [Related]
7. Exogenous and cell surface glycosaminoglycans alter DNA delivery efficiency of arginine and lysine homopeptides in distinctly different ways. Naik RJ; Chandra P; Mann A; Ganguli M J Biol Chem; 2011 May; 286(21):18982-93. PubMed ID: 21471199 [TBL] [Abstract][Full Text] [Related]
8. DNA transfer into human lung cells is improved with Tat-RGD peptide by caveoli-mediated endocytosis. Renigunta A; Krasteva G; König P; Rose F; Klepetko W; Grimminger F; Seeger W; Hänze J Bioconjug Chem; 2006; 17(2):327-34. PubMed ID: 16536462 [TBL] [Abstract][Full Text] [Related]
9. A novel IRQ ligand-modified nano-carrier targeted to a unique pathway of caveolar endocytic pathway. Mudhakir D; Akita H; Tan E; Harashima H J Control Release; 2008 Jan; 125(2):164-73. PubMed ID: 18054812 [TBL] [Abstract][Full Text] [Related]
10. Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. van der Aa MA; Huth US; Häfele SY; Schubert R; Oosting RS; Mastrobattista E; Hennink WE; Peschka-Süss R; Koning GA; Crommelin DJ Pharm Res; 2007 Aug; 24(8):1590-8. PubMed ID: 17385010 [TBL] [Abstract][Full Text] [Related]
11. Cell-surface glycosaminoglycans inhibit intranuclear uptake but promote post-nuclear processes of polyamidoamine dendrimer-pDNA transfection. Ziraksaz Z; Nomani A; Ruponen M; Soleimani M; Tabbakhian M; Haririan I Eur J Pharm Sci; 2013 Jan; 48(1-2):55-63. PubMed ID: 23131796 [TBL] [Abstract][Full Text] [Related]
12. Achieving high gene delivery performance with caveolae-mediated endocytosis pathway by (l)-arginine/(l)-histidine co-modified cationic gene carriers. Li H; Luo T; Sheng R; Sun J; Wang Z; Cao A Colloids Surf B Biointerfaces; 2016 Dec; 148():73-84. PubMed ID: 27591573 [TBL] [Abstract][Full Text] [Related]
13. A physicochemical approach for predicting the effectiveness of peptide-based gene delivery systems for use in plasmid-based gene therapy. Duguid JG; Li C; Shi M; Logan MJ; Alila H; Rolland A; Tomlinson E; Sparrow JT; Smith LC Biophys J; 1998 Jun; 74(6):2802-14. PubMed ID: 9635734 [TBL] [Abstract][Full Text] [Related]
14. Enhanced nuclear import and transfection efficiency of TAT peptide-based gene delivery systems modified by additional nuclear localization signals. Yi WJ; Yang J; Li C; Wang HY; Liu CW; Tao L; Cheng SX; Zhuo RX; Zhang XZ Bioconjug Chem; 2012 Jan; 23(1):125-34. PubMed ID: 22148643 [TBL] [Abstract][Full Text] [Related]
15. Probing the impact of valency on the routing of arginine-rich peptides into eukaryotic cells. Kawamura KS; Sung M; Bolewska-Pedyczak E; Gariépy J Biochemistry; 2006 Jan; 45(4):1116-27. PubMed ID: 16430208 [TBL] [Abstract][Full Text] [Related]
16. Role of intracellular cationic liposome-DNA complex dissociation in transfection mediated by cationic lipids. Cornelis S; Vandenbranden M; Ruysschaert JM; Elouahabi A DNA Cell Biol; 2002 Feb; 21(2):91-7. PubMed ID: 11953008 [TBL] [Abstract][Full Text] [Related]
18. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Zanta MA; Belguise-Valladier P; Behr JP Proc Natl Acad Sci U S A; 1999 Jan; 96(1):91-6. PubMed ID: 9874777 [TBL] [Abstract][Full Text] [Related]
19. Plasmid DNA delivery using fluorescein-labeled arginine-rich peptides. Oba M; Demizu Y; Yamashita H; Kurihara M; Tanaka M Bioorg Med Chem; 2015 Aug; 23(15):4911-4918. PubMed ID: 26048025 [TBL] [Abstract][Full Text] [Related]
20. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery. Upadhya A; Sangave PC J Pept Sci; 2016 Oct; 22(10):647-659. PubMed ID: 27723187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]