These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 17150521)
1. Repeated GenomiPhi, phi29 DNA polymerase-based rolling circle amplification, is useful for generation of large amounts of plasmid DNA. Sato M; Ohtsuka M; Ohmi Y Nucleic Acids Symp Ser (Oxf); 2004; (48):147-8. PubMed ID: 17150521 [TBL] [Abstract][Full Text] [Related]
2. Usefulness of repeated GenomiPhi, a phi29 DNA polymerase-based rolling circle amplification kit, for generation of large amounts of plasmid DNA. Sato M; Ohtsuka M; Ohmi Y Biomol Eng; 2005 Oct; 22(4):129-32. PubMed ID: 16023891 [TBL] [Abstract][Full Text] [Related]
3. TempliPhi, phi29 DNA polymerase based rolling circle amplification of templates for DNA sequencing. Nelson JR; Cai YC; Giesler TL; Farchaus JW; Sundaram ST; Ortiz-Rivera M; Hosta LP; Hewitt PL; Mamone JA; Palaniappan C; Fuller CW Biotechniques; 2002 Jun; Suppl():44-7. PubMed ID: 12083397 [TBL] [Abstract][Full Text] [Related]
4. Cell-free protein synthesis using multiply-primed rolling circle amplification products. Kumar G; Chernaya G Biotechniques; 2009 Jul; 47(1):637-9. PubMed ID: 19594449 [TBL] [Abstract][Full Text] [Related]
5. Identification of efficient fluorophores for the direct labeling of DNA via rolling circle amplification (RCA) polymerase φ29. Linck L; Resch-Genger U Eur J Med Chem; 2010 Dec; 45(12):5561-6. PubMed ID: 20926164 [TBL] [Abstract][Full Text] [Related]
6. Whole-genome amplification using Φ29 DNA polymerase. Burtt NP Cold Spring Harb Protoc; 2011 Jan; 2011(1):pdb.prot5552. PubMed ID: 21205852 [TBL] [Abstract][Full Text] [Related]
7. Single-stranded DNA binding protein facilitates specific enrichment of circular DNA molecules using rolling circle amplification. Mikawa T; Inoue J; Shigemori Y Anal Biochem; 2009 Aug; 391(2):81-4. PubMed ID: 19442644 [TBL] [Abstract][Full Text] [Related]
8. Atomic force microscopy analysis of rolling circle amplification of plasmid DNA. Mizuta R; Mizuta M; Kitamura D Arch Histol Cytol; 2003 May; 66(2):175-81. PubMed ID: 12846557 [TBL] [Abstract][Full Text] [Related]
9. Improvements of rolling circle amplification (RCA) efficiency and accuracy using Thermus thermophilus SSB mutant protein. Inoue J; Shigemori Y; Mikawa T Nucleic Acids Res; 2006 May; 34(9):e69. PubMed ID: 16707659 [TBL] [Abstract][Full Text] [Related]
10. Optimal DNA templates for rolling circle amplification revealed by in vitro selection. Mao Y; Liu M; Tram K; Gu J; Salena BJ; Jiang Y; Li Y Chemistry; 2015 May; 21(22):8069-74. PubMed ID: 25877998 [TBL] [Abstract][Full Text] [Related]
11. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Dean FB; Nelson JR; Giesler TL; Lasken RS Genome Res; 2001 Jun; 11(6):1095-9. PubMed ID: 11381035 [TBL] [Abstract][Full Text] [Related]
12. Application of Phi29 DNA polymerase mediated whole genome amplification on single spores of arbuscular mycorrhizal (AM) fungi. Gadkar V; Rillig MC FEMS Microbiol Lett; 2005 Jan; 242(1):65-71. PubMed ID: 15621421 [TBL] [Abstract][Full Text] [Related]
13. Microwave assisted rolling circle amplification. Yoshimura T; Nishida K; Uchibayashi K; Ohuchi S Nucleic Acids Symp Ser (Oxf); 2006; (50):305-6. PubMed ID: 17150939 [TBL] [Abstract][Full Text] [Related]
14. Whole-metagenome amplification of a microbial community associated with scleractinian coral by multiple displacement amplification using phi29 polymerase. Yokouchi H; Fukuoka Y; Mukoyama D; Calugay R; Takeyama H; Matsunaga T Environ Microbiol; 2006 Jul; 8(7):1155-63. PubMed ID: 16817924 [TBL] [Abstract][Full Text] [Related]
15. Estimation of DNA polymerase for improvement of rolling circle amplification. Yoshimura T; Arikado S; Ohuchi S Nucleic Acids Symp Ser (Oxf); 2006; (50):303-4. PubMed ID: 17150938 [TBL] [Abstract][Full Text] [Related]
16. Improved multiple displacement amplification with phi29 DNA polymerase for genotyping of single human cells. Kumar G; Garnova E; Reagin M; Vidali A Biotechniques; 2008 Jun; 44(7):879-90. PubMed ID: 18533898 [TBL] [Abstract][Full Text] [Related]
17. Preparation of DNA nanostructures with repetitive binding motifs by rolling circle amplification. Reiss E; Hölzel R; Bier FF Methods Mol Biol; 2011; 749():151-68. PubMed ID: 21674371 [TBL] [Abstract][Full Text] [Related]
18. Optimization and evaluation of single-cell whole-genome multiple displacement amplification. Spits C; Le Caignec C; De Rycke M; Van Haute L; Van Steirteghem A; Liebaers I; Sermon K Hum Mutat; 2006 May; 27(5):496-503. PubMed ID: 16619243 [TBL] [Abstract][Full Text] [Related]
19. In vitro evolution of phi29 DNA polymerases through compartmentalized gene expression and rolling-circle replication. Sakatani Y; Mizuuchi R; Ichihashi N Protein Eng Des Sel; 2019 Dec; 32(11):481-487. PubMed ID: 32533140 [TBL] [Abstract][Full Text] [Related]
20. Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Zhao W; Ali MM; Brook MA; Li Y Angew Chem Int Ed Engl; 2008; 47(34):6330-7. PubMed ID: 18680110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]