BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17150533)

  • 1. Translesion synthesis by human DNA polymerase eta across oxidative products of guanine.
    Kino K; Ito N; Sugasawa K; Sugiyama H; Hanaoka F
    Nucleic Acids Symp Ser (Oxf); 2004; (48):171-2. PubMed ID: 17150533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide incorporation against 7,8-dihydro-8-oxoguanine is influenced by neighboring base sequences in TLS DNA polymerase reaction.
    Yung C; Suzuki T; Okugawa Y; Kawakami A; Loakes D; Negishi K; Negishi T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):49-50. PubMed ID: 18029580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of efficient and accurate nucleotide incorporation opposite 7,8-dihydro-8-oxoguanine by Saccharomyces cerevisiae DNA polymerase eta.
    Carlson KD; Washington MT
    Mol Cell Biol; 2005 Mar; 25(6):2169-76. PubMed ID: 15743815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UVR-induced G-C to C-G transversions from oxidative DNA damage.
    Kino K; Sugiyama H
    Mutat Res; 2005 Apr; 571(1-2):33-42. PubMed ID: 15748636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of dCTP incorporation opposite to 7,8-dihydro-8-oxoguanine with different 5' nearest neighbors by yeast polymerase eta.
    Yung CW; Loakes D; Arimoto S; Negishi K; Negishi T
    Nucleic Acids Symp Ser (Oxf); 2008; (52):531-2. PubMed ID: 18776488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hydantoin lesions formed from oxidation of 7,8-dihydro-8-oxoguanine are potent sources of replication errors in vivo.
    Henderson PT; Delaney JC; Muller JG; Neeley WL; Tannenbaum SR; Burrows CJ; Essigmann JM
    Biochemistry; 2003 Aug; 42(31):9257-62. PubMed ID: 12899611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The substrate specificity of MutY for hyperoxidized guanine lesions in vivo.
    Delaney S; Neeley WL; Delaney JC; Essigmann JM
    Biochemistry; 2007 Feb; 46(5):1448-55. PubMed ID: 17260974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adduct size limits efficient and error-free bypass across bulky N2-guanine DNA lesions by human DNA polymerase eta.
    Choi JY; Guengerich FP
    J Mol Biol; 2005 Sep; 352(1):72-90. PubMed ID: 16061253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nickel(II)-catalysed oxidative guanine and DNA damage beyond 8-oxoguanine.
    Kelly MC; Whitaker G; White B; Smyth MR
    Free Radic Biol Med; 2007 Jun; 42(11):1680-9. PubMed ID: 17462536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic basis for the differing response to an oxidative lesion by a replicative and a lesion bypass DNA polymerase from Sulfolobus solfataricus.
    Maxwell BA; Suo Z
    Biochemistry; 2012 Apr; 51(16):3485-96. PubMed ID: 22471521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillating formation of 8-oxoguanine during DNA oxidation.
    White B; Smyth MR; Stuart JD; Rusling JF
    J Am Chem Soc; 2003 Jun; 125(22):6604-5. PubMed ID: 12769549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the oxidized guanosine lesions spiroiminodihydantoin and guanidinohydantoin on proofreading by Escherichia coli DNA polymerase I (Klenow fragment) in different sequence contexts.
    Kornyushyna O; Burrows CJ
    Biochemistry; 2003 Nov; 42(44):13008-18. PubMed ID: 14596616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of DNA lesions on the transcription reaction of mitochondrial RNA polymerase: implications for bypass RNA synthesis on oxidative DNA lesions.
    Nakanishi N; Fukuoh A; Kang D; Iwai S; Kuraoka I
    Mutagenesis; 2013 Jan; 28(1):117-23. PubMed ID: 23053822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient and erroneous incorporation of oxidized DNA precursors by human DNA polymerase eta.
    Shimizu M; Gruz P; Kamiya H; Masutani C; Xu Y; Usui Y; Sugiyama H; Harashima H; Hanaoka F; Nohmi T
    Biochemistry; 2007 May; 46(18):5515-22. PubMed ID: 17439242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics, structure, and mechanism of 8-Oxo-7,8-dihydro-2'-deoxyguanosine bypass by human DNA polymerase η.
    Patra A; Nagy LD; Zhang Q; Su Y; Müller L; Guengerich FP; Egli M
    J Biol Chem; 2014 Jun; 289(24):16867-82. PubMed ID: 24759104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible cause of G-C-->C-G transversion mutation by guanine oxidation product, imidazolone.
    Kino K; Sugiyama H
    Chem Biol; 2001 Apr; 8(4):369-78. PubMed ID: 11325592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase.
    Hsu GW; Ober M; Carell T; Beese LS
    Nature; 2004 Sep; 431(7005):217-21. PubMed ID: 15322558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-Hydroxyadenine (isoguanine) as oxidative DNA damage: its formation and mutation inducibility.
    Kamiya H; Kasai H
    Nucleic Acids Symp Ser; 1995; (34):233-4. PubMed ID: 8841637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Error-prone and inefficient replication across 8-hydroxyguanine (8-oxoguanine) in human and mouse ras gene fragments by DNA polymerase kappa.
    Jałoszyński P; Ohashi E; Ohmori H; Nishimura S
    Genes Cells; 2005 Jun; 10(6):543-50. PubMed ID: 15938713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA polymerases provide a canon of strategies for translesion synthesis past oxidatively generated lesions.
    Zahn KE; Wallace SS; Doublié S
    Curr Opin Struct Biol; 2011 Jun; 21(3):358-69. PubMed ID: 21482102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.