BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 17150642)

  • 1. Ribonucleopeptides recognize the phosphotyrosine residue.
    Hasegawa T; Yoshikawa S; Morii T
    Nucleic Acids Symp Ser (Oxf); 2005; (49):79-80. PubMed ID: 17150642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Context-dependent fluorescence detection of a phosphorylated tyrosine residue by a ribonucleopeptide.
    Hasegawa T; Hagihara M; Fukuda M; Nakano S; Fujieda N; Morii T
    J Am Chem Soc; 2008 Jul; 130(27):8804-12. PubMed ID: 18597435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribonucleopeptides: functional RNA-peptide complexes.
    Hagihara M; Hasegawa T; Sato S; Yoshikawa S; Ohkubo K; Morii T
    Biopolymers; 2004; 76(1):66-8. PubMed ID: 14997476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of sensing ribonucleopeptides for small ligands.
    Hagihara M; Hasegawa T; Tanabe Y; Sato S; Yoshikawa S; Ohkubo K; Morii T
    Nucleic Acids Symp Ser (Oxf); 2004; (48):33-4. PubMed ID: 17150464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stepwise functionalization of ribonucleopeptide complexes to receptors and sensors.
    Fukuda M; Tanabe Y; Morii T
    Nucleic Acids Symp Ser (Oxf); 2005; (49):355-6. PubMed ID: 17150780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stepwise functionalization of ribonucleopeptides: optimization of the response of fluorescent ribonucleopeptide sensors for ATP.
    Hasegawa T; Hagihara M; Fukuda M; Morii T
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(10-12):1277-81. PubMed ID: 18066768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of ribonucleopeptide-based fluorescent sensors for biologically active amines.
    Hasegawa T; Hayashi H; Morii T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):423-4. PubMed ID: 18029767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling a substrate-binding geometry of ribonucleopeptide receptor.
    Fukuda M; Nakano S; Morii T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):421-2. PubMed ID: 18029766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalently linked fluorescent ribonucreopeptide sensors.
    Fukuda M; Fong-Fong L; Morii T
    Nucleic Acids Symp Ser (Oxf); 2009; (53):257-8. PubMed ID: 19749358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a stable functional ribonucleopeptide complex by the covalent linking method.
    Fukuda M; Nakano S; Tainaka K; Fujieda N; Morii T
    Nucleic Acids Symp Ser (Oxf); 2008; (52):195-6. PubMed ID: 18776320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective recognition of a tetra-amino-acid motif containing phosphorylated tyrosine residue by ribonucleopeptide.
    Nakano S; Hasegawa T; Fukuda M; Fujieda N; Tainaka K; Morii T
    Nucleic Acids Symp Ser (Oxf); 2008; (52):199-200. PubMed ID: 18776322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modular strategy for tailoring fluorescent biosensors from ribonucleopeptide complexes.
    Hagihara M; Fukuda M; Hasegawa T; Morii T
    J Am Chem Soc; 2006 Oct; 128(39):12932-40. PubMed ID: 17002390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro selection of ATP-binding receptors using a ribonucleopeptide complex.
    Morii T; Hagihara M; Sato S; Makino K
    J Am Chem Soc; 2002 May; 124(17):4617-22. PubMed ID: 11971709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stepwise molding of a highly selective ribonucleopeptide receptor.
    Sato S; Fukuda M; Hagihara M; Tanabe Y; Ohkubo K; Morii T
    J Am Chem Soc; 2005 Jan; 127(1):30-1. PubMed ID: 15631433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of ribonucleopeptide-based fluorescent sensors for biologically active amines based on the stepwise molding strategy.
    Tainaka K; Hasegawa T; Fukuda M; Nakano S; Fujieda N; Morii T
    Nucleic Acids Symp Ser (Oxf); 2008; (52):201-2. PubMed ID: 18776323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of ratiometric fluorescent sensors by ribonucleopeptides.
    Annoni C; Nakata E; Tamura T; Liew FF; Nakano S; Gelmi ML; Morii T
    Org Biomol Chem; 2012 Nov; 10(44):8767-9. PubMed ID: 23069733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile conversion of RNA aptamers to modular fluorescent sensors with tunable detection wavelengths.
    Nakano S; Nakata E; Morii T
    Bioorg Med Chem Lett; 2011 Aug; 21(15):4503-6. PubMed ID: 21719284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based design of fluorescent biosensors from ribonucleopeptide complexes.
    Hayashi H; Inoue M; Morii T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):95-6. PubMed ID: 18029603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A ribonucleopeptide module for effective conversion of an RNA aptamer to a fluorescent sensor.
    Liew FF; Hayashi H; Nakano S; Nakata E; Morii T
    Bioorg Med Chem; 2011 Oct; 19(19):5771-5. PubMed ID: 21906952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of dopamine sensors by using fluorescent ribonucleopeptide complexes.
    Liew FF; Hasegawa T; Fukuda M; Nakata E; Morii T
    Bioorg Med Chem; 2011 Aug; 19(15):4473-81. PubMed ID: 21742507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.