These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17150780)

  • 1. Stepwise functionalization of ribonucleopeptide complexes to receptors and sensors.
    Fukuda M; Tanabe Y; Morii T
    Nucleic Acids Symp Ser (Oxf); 2005; (49):355-6. PubMed ID: 17150780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling a substrate-binding geometry of ribonucleopeptide receptor.
    Fukuda M; Nakano S; Morii T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):421-2. PubMed ID: 18029766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a stable functional ribonucleopeptide complex by the covalent linking method.
    Fukuda M; Nakano S; Tainaka K; Fujieda N; Morii T
    Nucleic Acids Symp Ser (Oxf); 2008; (52):195-6. PubMed ID: 18776320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stepwise functionalization of ribonucleopeptides: optimization of the response of fluorescent ribonucleopeptide sensors for ATP.
    Hasegawa T; Hagihara M; Fukuda M; Morii T
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(10-12):1277-81. PubMed ID: 18066768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalently linked fluorescent ribonucreopeptide sensors.
    Fukuda M; Fong-Fong L; Morii T
    Nucleic Acids Symp Ser (Oxf); 2009; (53):257-8. PubMed ID: 19749358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modular strategy for tailoring fluorescent biosensors from ribonucleopeptide complexes.
    Hagihara M; Fukuda M; Hasegawa T; Morii T
    J Am Chem Soc; 2006 Oct; 128(39):12932-40. PubMed ID: 17002390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of ribonucleopeptide-based fluorescent sensors for biologically active amines.
    Hasegawa T; Hayashi H; Morii T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):423-4. PubMed ID: 18029767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based design of fluorescent biosensors from ribonucleopeptide complexes.
    Hayashi H; Inoue M; Morii T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):95-6. PubMed ID: 18029603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stepwise molding of a highly selective ribonucleopeptide receptor.
    Sato S; Fukuda M; Hagihara M; Tanabe Y; Ohkubo K; Morii T
    J Am Chem Soc; 2005 Jan; 127(1):30-1. PubMed ID: 15631433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribonucleopeptides: functional RNA-peptide complexes.
    Hagihara M; Hasegawa T; Sato S; Yoshikawa S; Ohkubo K; Morii T
    Biopolymers; 2004; 76(1):66-8. PubMed ID: 14997476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribonucleopeptides recognize the phosphotyrosine residue.
    Hasegawa T; Yoshikawa S; Morii T
    Nucleic Acids Symp Ser (Oxf); 2005; (49):79-80. PubMed ID: 17150642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of ribonucleopeptide-based fluorescent sensors for biologically active amines based on the stepwise molding strategy.
    Tainaka K; Hasegawa T; Fukuda M; Nakano S; Fujieda N; Morii T
    Nucleic Acids Symp Ser (Oxf); 2008; (52):201-2. PubMed ID: 18776323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of dopamine sensors by using fluorescent ribonucleopeptide complexes.
    Liew FF; Hasegawa T; Fukuda M; Nakata E; Morii T
    Bioorg Med Chem; 2011 Aug; 19(15):4473-81. PubMed ID: 21742507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A ribonucleopeptide module for effective conversion of an RNA aptamer to a fluorescent sensor.
    Liew FF; Hayashi H; Nakano S; Nakata E; Morii T
    Bioorg Med Chem; 2011 Oct; 19(19):5771-5. PubMed ID: 21906952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of sensing ribonucleopeptides for small ligands.
    Hagihara M; Hasegawa T; Tanabe Y; Sato S; Yoshikawa S; Ohkubo K; Morii T
    Nucleic Acids Symp Ser (Oxf); 2004; (48):33-4. PubMed ID: 17150464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous detection of ATP and GTP by covalently linked fluorescent ribonucleopeptide sensors.
    Nakano S; Fukuda M; Tamura T; Sakaguchi R; Nakata E; Morii T
    J Am Chem Soc; 2013 Mar; 135(9):3465-73. PubMed ID: 23373863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural aspects for the function of ATP-binding ribonucleopeptide receptors.
    Nakano S; Fukuda M; Mashima T; Katahira M; Morii T
    Nucleic Acids Symp Ser (Oxf); 2009; (53):259-60. PubMed ID: 19749359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptor-based fluorescent sensors constructed from ribonucleopeptide.
    Nakano S; Konishi H; Morii T
    Methods Enzymol; 2020; 641():183-223. PubMed ID: 32713523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Context-dependent fluorescence detection of a phosphorylated tyrosine residue by a ribonucleopeptide.
    Hasegawa T; Hagihara M; Fukuda M; Nakano S; Fujieda N; Morii T
    J Am Chem Soc; 2008 Jul; 130(27):8804-12. PubMed ID: 18597435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro selection of ATP-binding receptors using a ribonucleopeptide complex.
    Morii T; Hagihara M; Sato S; Makino K
    J Am Chem Soc; 2002 May; 124(17):4617-22. PubMed ID: 11971709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.