BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 17150860)

  • 1. Inhibition of DNA replication by a d(CAG) repeat binding ligand.
    Hagihara M; Nakatani K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):147-8. PubMed ID: 17150860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small-molecule ligand induces nucleotide flipping in (CAG)n trinucleotide repeats.
    Nakatani K; Hagihara S; Goto Y; Kobori A; Hagihara M; Hayashi G; Kyo M; Nomura M; Mishima M; Kojima C
    Nat Chem Biol; 2005 Jun; 1(1):39-43. PubMed ID: 16407992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of a small-molecular ligand complexed with CAG trinucleotide repeat DNA.
    Nakatani K; Hagihara S; Goto Y; Kobori A; Hagihara M; Hayashi G; Kyo M; Nomura M; Mishima M; Kojima C
    Nucleic Acids Symp Ser (Oxf); 2005; (49):49-50. PubMed ID: 17150627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of sequence context and length on the structure and stability of triplet repeat DNA oligomers.
    Paiva AM; Sheardy RD
    Biochemistry; 2004 Nov; 43(44):14218-27. PubMed ID: 15518572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A small molecule regulates hairpin structures in d(CGG) trinucleotide repeats.
    Hagihara M; He H; Kimura M; Nakatani K
    Bioorg Med Chem Lett; 2012 Mar; 22(5):2000-3. PubMed ID: 22326165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence.
    Lee BJ; Barch M; Castner EW; Völker J; Breslauer KJ
    Biochemistry; 2007 Sep; 46(38):10756-66. PubMed ID: 17718541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of naphthyridine carbamate dimer to the (CGG)n repeat results in the disruption of the G-C base pairing.
    Peng T; Nakatani K
    Angew Chem Int Ed Engl; 2005 Nov; 44(44):7280-3. PubMed ID: 16229032
    [No Abstract]   [Full Text] [Related]  

  • 8. Replication restart: a pathway for (CTG).(CAG) repeat deletion in Escherichia coli.
    Kim SH; Pytlos MJ; Sinden RR
    Mutat Res; 2006 Mar; 595(1-2):5-22. PubMed ID: 16472829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural roles of CTG repeats in slippage expansion during DNA replication.
    Chi LM; Lam SL
    Nucleic Acids Res; 2005; 33(5):1604-17. PubMed ID: 15767285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic amplification of synthetic oligodeoxyribonucleotides: implications for triplet repeat expansions in the human genome.
    Behn-Krappa A; Doerfler W
    Hum Mutat; 1994; 3(1):19-24. PubMed ID: 8118462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The binding of guanine-guanine mismatched DNA to naphthyridine dimer immobilized sensor surfaces: kinetic aspects.
    Nakatani K; Kobori A; Kumasawa H; Goto Y; Saito I
    Bioorg Med Chem; 2004 Jun; 12(12):3117-23. PubMed ID: 15158779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Naphthyridine-Benzoazaquinolone: Evaluation of a Tricyclic System for the Binding to (CAG)n Repeat DNA and RNA.
    Li J; Sakata A; He H; Bai LP; Murata A; Dohno C; Nakatani K
    Chem Asian J; 2016 Jul; 11(13):1971-81. PubMed ID: 27146450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of actinomycin D to DNA oligomers of CXG trinucleotide repeats.
    Chen FM
    Biochemistry; 1998 Mar; 37(11):3955-64. PubMed ID: 9521717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of DNA strand slippage synthesis by a bulge binding synthetic agent.
    Kappen LS; Xi Z; Jones GB; Goldberg IH
    Biochemistry; 2003 Feb; 42(7):2166-73. PubMed ID: 12590606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro expansion of DNA triplet repeats with bulge binders and different DNA polymerases.
    Ouyang D; Yi L; Liu L; Mu HT; Xi Z
    FEBS J; 2008 Sep; 275(18):4510-21. PubMed ID: 18673388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of guanine-adenine mismatches by surface plasmon resonance sensor carrying naphthyridine-azaquinolone hybrid on the surface.
    Hagihara S; Kumasawa H; Goto Y; Hayashi G; Kobori A; Saito I; Nakatani K
    Nucleic Acids Res; 2004; 32(1):278-86. PubMed ID: 14715926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expansions of CAG.CTG repeats in immortalized human astrocytes.
    Claassen DA; Lahue RS
    Hum Mol Genet; 2007 Dec; 16(24):3088-96. PubMed ID: 17881653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structures of the Huntington's disease DNA triplets, (CAG)n.
    Mariappan SV; Silks LA; Chen X; Springer PA; Wu R; Moyzis RK; Bradbury EM; Garcia AE; Gupta G
    J Biomol Struct Dyn; 1998 Feb; 15(4):723-44. PubMed ID: 9514249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rev1 enhances CAG.CTG repeat stability in Saccharomyces cerevisiae.
    Collins NS; Bhattacharyya S; Lahue RS
    DNA Repair (Amst); 2007 Jan; 6(1):38-44. PubMed ID: 16979389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics studies of trinucleotide repeat DNA involved in neurodegenerative disorders.
    Jithesh PV; Singh P; Joshi R
    J Biomol Struct Dyn; 2001 Dec; 19(3):479-95. PubMed ID: 11790146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.