BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 17150860)

  • 21. CTG repeats associated with human genetic disease are inherently flexible.
    Chastain PD; Sinden RR
    J Mol Biol; 1998 Jan; 275(3):405-11. PubMed ID: 9466918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A dimeric form of N-methoxycarbonyl-2-amino-1,8-naphthyridine bound to the A-A mismatch in the CAG/CAG base triad in dsRNA.
    Nakatani K; Toda M; He H
    Bioorg Med Chem Lett; 2013 Jan; 23(2):558-61. PubMed ID: 23245513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimulation on DNA triplet repeat strand slippage synthesis by the designed spirocycles.
    Xi Z; Ouyang D; Mu HT
    Bioorg Med Chem Lett; 2006 Mar; 16(5):1180-4. PubMed ID: 16364637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular labeling of the CGG trinucleotide repeat.
    Peng T; Nakatani K
    Nucleic Acids Symp Ser (Oxf); 2005; (49):39-40. PubMed ID: 17150622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Base stacking and even/odd behavior of hairpin loops in DNA triplet repeat slippage and expansion with DNA polymerase.
    Hartenstine MJ; Goodman MF; Petruska J
    J Biol Chem; 2000 Jun; 275(24):18382-90. PubMed ID: 10849445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for two preferred hairpin folding patterns in d(CGG).d(CCG) repeat tracts in vivo.
    Darlow JM; Leach DR
    J Mol Biol; 1998 Jan; 275(1):17-23. PubMed ID: 9451435
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strong binding of naphthyridine derivatives to a guanine base in DNA duplexes containing an AP site.
    Gao Q; Satake H; Dai Q; Ono K; Nishizawa S; Teramae N
    Nucleic Acids Symp Ser (Oxf); 2005; (49):219-20. PubMed ID: 17150712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Slipped structures in DNA triplet repeat sequences: entropic contributions to genetic instabilities.
    Harvey SC
    Biochemistry; 1997 Mar; 36(11):3047-9. PubMed ID: 9115978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new ligand binding to G-G mismatch having improved thermal and alkaline stability.
    Peng T; Murase T; Goto Y; Kobori A; Nakatani K
    Bioorg Med Chem Lett; 2005 Jan; 15(2):259-62. PubMed ID: 15603935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of sequence context and length on the kinetics of DNA duplex formation from complementary hairpins possessing (CNG) repeats.
    Paiva AM; Sheardy RD
    J Am Chem Soc; 2005 Apr; 127(15):5581-5. PubMed ID: 15826196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The guanine-rich fragile X chromosome repeats are reluctant to form tetraplexes.
    Fojtík P; Kejnovská I; Vorlícková M
    Nucleic Acids Res; 2004; 32(1):298-306. PubMed ID: 14718550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MutSβ promotes trinucleotide repeat expansion by recruiting DNA polymerase β to nascent (CAG)n or (CTG)n hairpins for error-prone DNA synthesis.
    Guo J; Gu L; Leffak M; Li GM
    Cell Res; 2016 Jul; 26(7):775-86. PubMed ID: 27255792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMR structural analysis of the G.G mismatch DNA complexed with naphthyridine-dimer.
    Nomura M; Hagihara S; Goto Y; Nakatani K; Kojima C
    Nucleic Acids Symp Ser (Oxf); 2005; (49):213-4. PubMed ID: 17150709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMR determination of the 2:1 binding complex of naphthyridine carbamate dimer (NCD) and CGG/CGG triad in double-stranded DNA.
    Yamada T; Furuita K; Sakurabayashi S; Nomura M; Kojima C; Nakatani K
    Nucleic Acids Res; 2022 Sep; 50(17):9621-9631. PubMed ID: 36095126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of trinucleotide repeats instabilities: the necessities of repeat non-B secondary structure formation and the roles of cellular trans-acting factors.
    Pan XF
    Yi Chuan Xue Bao; 2006 Jan; 33(1):1-11. PubMed ID: 16450581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A small molecule affecting the replication of trinucleotide repeat d(GAA)n.
    He H; Hagihara M; Nakatani K
    Chemistry; 2009 Oct; 15(40):10641-8. PubMed ID: 19718722
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Small molecule-induced trinucleotide repeat contractions during in vitro DNA synthesis.
    Dohno C; Hagihara M; Binti Mohd Zaifuddin N; Nihei M; Saito K; Nakatani K
    Chem Commun (Camb); 2021 Apr; 57(26):3235-3238. PubMed ID: 33646236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo.
    Nakamori M; Panigrahi GB; Lanni S; Gall-Duncan T; Hayakawa H; Tanaka H; Luo J; Otabe T; Li J; Sakata A; Caron MC; Joshi N; Prasolava T; Chiang K; Masson JY; Wold MS; Wang X; Lee MYWT; Huddleston J; Munson KM; Davidson S; Layeghifard M; Edward LM; Gallon R; Santibanez-Koref M; Murata A; Takahashi MP; Eichler EE; Shlien A; Nakatani K; Mochizuki H; Pearson CE
    Nat Genet; 2020 Feb; 52(2):146-159. PubMed ID: 32060489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro replication slippage by DNA polymerases from thermophilic organisms.
    Viguera E; Canceill D; Ehrlich SD
    J Mol Biol; 2001 Sep; 312(2):323-33. PubMed ID: 11554789
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Duplications between direct repeats stabilized by DNA secondary structure occur preferentially in the leading strand during DNA replication.
    Hashem VI; Sinden RR
    Mutat Res; 2005 Mar; 570(2):215-26. PubMed ID: 15708580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.