BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17150917)

  • 41. Justicia adhatoda induces megakaryocyte differentiation through mitochondrial ROS generation.
    Gutti U; Komati JK; Kotipalli A; Saladi RGV; Gutti RK
    Phytomedicine; 2018 Apr; 43():135-139. PubMed ID: 29747746
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Defective RAB31-mediated megakaryocytic early endosomal trafficking of VWF, EGFR, and M6PR in RUNX1 deficiency.
    Jalagadugula G; Mao G; Goldfinger LE; Wurtzel J; Del Carpio-Cano F; Lambert MP; Estevez B; French DL; Poncz M; Rao AK
    Blood Adv; 2022 Sep; 6(17):5100-5112. PubMed ID: 35839075
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Megakaryocytic programming by a transcriptional regulatory loop: A circle connecting RUNX1, GATA-1, and P-TEFb.
    Goldfarb AN
    J Cell Biochem; 2009 Jun; 107(3):377-82. PubMed ID: 19350569
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic combinatorial interactions of RUNX1 and cooperating partners regulates megakaryocytic differentiation in cell line models.
    Pencovich N; Jaschek R; Tanay A; Groner Y
    Blood; 2011 Jan; 117(1):e1-14. PubMed ID: 20959602
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Runx1 downregulates stem cell and megakaryocytic transcription programs that support niche interactions.
    Behrens K; Triviai I; Schwieger M; Tekin N; Alawi M; Spohn M; Indenbirken D; Ziegler M; Müller U; Alexander WS; Stocking C
    Blood; 2016 Jun; 127(26):3369-81. PubMed ID: 27076172
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SON inhibits megakaryocytic differentiation via repressing RUNX1 and the megakaryocytic gene expression program in acute megakaryoblastic leukemia.
    Vukadin L; Kim JH; Park EY; Stone JK; Ungerleider N; Baddoo MC; Kong HK; Richard A; Tran J; Giannini H; Flemington EK; Lim SS; Ahn EE
    Cancer Gene Ther; 2021 Sep; 28(9):1000-1015. PubMed ID: 33247227
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RUNX1, but not its familial platelet disorder mutants, synergistically activates PF4 gene expression in combination with ETS family proteins.
    Okada Y; Watanabe M; Nakai T; Kamikawa Y; Shimizu M; Fukuhara Y; Yonekura M; Matsuura E; Hoshika Y; Nagai R; Aird WC; Doi T
    J Thromb Haemost; 2013 Sep; 11(9):1742-50. PubMed ID: 23848403
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells.
    Kitoh A; Ono M; Naoe Y; Ohkura N; Yamaguchi T; Yaguchi H; Kitabayashi I; Tsukada T; Nomura T; Miyachi Y; Taniuchi I; Sakaguchi S
    Immunity; 2009 Oct; 31(4):609-20. PubMed ID: 19800266
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tescalcin is an essential factor in megakaryocytic differentiation associated with Ets family gene expression.
    Levay K; Slepak VZ
    J Clin Invest; 2007 Sep; 117(9):2672-83. PubMed ID: 17717601
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Knocking down osteopontin expression by specific siRNA reduces the in vitro invasiveness of human hepatocellular carcinoma cells].
    Zhu XQ; Ye QH; Lei KF; Chen J; Qin LX
    Zhonghua Zhong Liu Za Zhi; 2006 Jun; 28(6):404-7. PubMed ID: 17152482
    [TBL] [Abstract][Full Text] [Related]  

  • 51. AML1/ETO-induced survivin expression inhibits transcriptional regulation of myeloid differentiation.
    Balkhi MY; Christopeit M; Chen Y; Geletu M; Behre G
    Exp Hematol; 2008 Nov; 36(11):1449-60. PubMed ID: 18687517
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RNA interference of the BMPR-IB gene blocks BMP-2-induced osteogenic gene expression in human bone cells.
    Singhatanadgit W; Salih V; Olsen I
    Cell Biol Int; 2008 Nov; 32(11):1362-70. PubMed ID: 18773965
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Targeting the oligomerization domain of ETO interferes with RUNX1/ETO oncogenic activity in t(8;21)-positive leukemic cells.
    Wichmann C; Chen L; Heinrich M; Baus D; Pfitzner E; Zörnig M; Ottmann OG; Grez M
    Cancer Res; 2007 Mar; 67(5):2280-9. PubMed ID: 17332359
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Defective RAB1B-related megakaryocytic ER-to-Golgi transport in RUNX1 haplodeficiency: impact on von Willebrand factor.
    Jalagadugula G; Goldfinger LE; Mao G; Lambert MP; Rao AK
    Blood Adv; 2018 Apr; 2(7):797-806. PubMed ID: 29632235
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Allosteric inhibition of the protein-protein interaction between the leukemia-associated proteins Runx1 and CBFbeta.
    Gorczynski MJ; Grembecka J; Zhou Y; Kong Y; Roudaia L; Douvas MG; Newman M; Bielnicka I; Baber G; Corpora T; Shi J; Sridharan M; Lilien R; Donald BR; Speck NA; Brown ML; Bushweller JH
    Chem Biol; 2007 Oct; 14(10):1186-97. PubMed ID: 17961830
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Early growth response-1 regulates angiopoietin-1-induced endothelial cell proliferation, migration, and differentiation.
    Abdel-Malak NA; Mofarrahi M; Mayaki D; Khachigian LM; Hussain SN
    Arterioscler Thromb Vasc Biol; 2009 Feb; 29(2):209-16. PubMed ID: 19112164
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rac-1 promotes pulmonary artery smooth muscle cell proliferation by upregulation of plasminogen activator inhibitor-1: role of NFkappaB-dependent hypoxia-inducible factor-1alpha transcription.
    Diebold I; Djordjevic T; Hess J; Görlach A
    Thromb Haemost; 2008 Dec; 100(6):1021-8. PubMed ID: 19132225
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Glycoprotein Ibalpha promoter drives megakaryocytic lineage-restricted expression after hematopoietic stem cell transduction using a self-inactivating lentiviral vector.
    Lavenu-Bombled C; Izac B; Legrand F; Cambot M; Vigier A; Massé JM; Dubart-Kupperschmitt A
    Stem Cells; 2007 Jun; 25(6):1571-7. PubMed ID: 17379771
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RUNX1 translocations in malignant hemopathies.
    De Braekeleer E; Férec C; De Braekeleer M
    Anticancer Res; 2009 Apr; 29(4):1031-7. PubMed ID: 19414342
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Retroviral insertional mutagenesis identifies RUNX genes involved in chronic myeloid leukemia disease persistence under imatinib treatment.
    Miething C; Grundler R; Mugler C; Brero S; Hoepfl J; Geigl J; Speicher MR; Ottmann O; Peschel C; Duyster J
    Proc Natl Acad Sci U S A; 2007 Mar; 104(11):4594-9. PubMed ID: 17360569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.