These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 17150930)
1. Systematic deletion of rRNAs for investigating ribosome architecture and function. Kitahara K; Sato NS; Namba N; Yokota T; Tsujimura T; Suzuki T Nucleic Acids Symp Ser (Oxf); 2006; (50):287-8. PubMed ID: 17150930 [TBL] [Abstract][Full Text] [Related]
2. Coupling of rRNA transcription and ribosomal assembly in vivo. Formation of active ribosomal subunits in Escherichia coli requires transcription of rRNA genes by host RNA polymerase which cannot be replaced by bacteriophage T7 RNA polymerase. Lewicki BT; Margus T; Remme J; Nierhaus KH J Mol Biol; 1993 Jun; 231(3):581-93. PubMed ID: 8515441 [TBL] [Abstract][Full Text] [Related]
3. Correlation of the expansion segments in mammalian rRNA with the fine structure of the 80 S ribosome; a cryoelectron microscopic reconstruction of the rabbit reticulocyte ribosome at 21 A resolution. Dube P; Bacher G; Stark H; Mueller F; Zemlin F; van Heel M; Brimacombe R J Mol Biol; 1998 Jun; 279(2):403-21. PubMed ID: 9642046 [TBL] [Abstract][Full Text] [Related]
4. The ordered transcription of RNA domains is not essential for ribosome biogenesis in Escherichia coli. Kitahara K; Suzuki T Mol Cell; 2009 Jun; 34(6):760-6. PubMed ID: 19560426 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the ribosome large subunit assembly and 23 S rRNA stability in vivo. Liiv A; Tenson T; Remme J J Mol Biol; 1996 Nov; 263(3):396-410. PubMed ID: 8918596 [TBL] [Abstract][Full Text] [Related]
6. Ribosomal RNAs are tolerant toward genetic insertions: evolutionary origin of the expansion segments. Yokoyama T; Suzuki T Nucleic Acids Res; 2008 Jun; 36(11):3539-51. PubMed ID: 18456707 [TBL] [Abstract][Full Text] [Related]
7. Functional analysis of the residues C770 and G771 of E. coli 16S rRNA implicated in forming the intersubunit bridge B2c of the ribosome. Kim HM; Yeom JH; Ha HJ; Kim JM; Lee K J Microbiol Biotechnol; 2007 Jul; 17(7):1204-7. PubMed ID: 18051334 [TBL] [Abstract][Full Text] [Related]
8. Importance of transient structures during post-transcriptional refolding of the pre-23S rRNA and ribosomal large subunit assembly. Liiv A; Remme J J Mol Biol; 2004 Sep; 342(3):725-41. PubMed ID: 15342233 [TBL] [Abstract][Full Text] [Related]
9. Prediction of the recognition sites on 16S and 23S rRNAs from E. coli for the formation of 16S-23S rRNA complex. Thanaraj TA; Kolaskar AS; Pandit MW J Biomol Struct Dyn; 1988 Dec; 6(3):587-92. PubMed ID: 3078239 [TBL] [Abstract][Full Text] [Related]
10. Functional genetic selection of Helix 66 in Escherichia coli 23S rRNA identified the eukaryotic-binding sequence for ribosomal protein L2. Kitahara K; Kajiura A; Sato NS; Suzuki T Nucleic Acids Res; 2007; 35(12):4018-29. PubMed ID: 17553838 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of ribosomal subunit association: oligodeoxynucleotides as probes. Agrawal RK; De A; Burma DP Indian J Biochem Biophys; 1992 Apr; 29(2):148-53. PubMed ID: 1398707 [TBL] [Abstract][Full Text] [Related]
12. Affinity purification of in vivo-assembled ribosomes for in vitro biochemical analysis. Youngman EM; Green R Methods; 2005 Jul; 36(3):305-12. PubMed ID: 16076457 [TBL] [Abstract][Full Text] [Related]
13. [Mutations in the Escherichia coli 23S rRNA increase the rate of peptidyl-tRNA dissociation from the ribosome]. Maĭvali U; Saarma U; Remme Ia Mol Biol (Mosk); 2001; 35(4):666-71. PubMed ID: 11524953 [TBL] [Abstract][Full Text] [Related]