BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 17150935)

  • 1. Chemical natures and application of 6-formylpterin derivatives.
    Nonogawa M; Piyanart S; Arai T; Endo N; Pack SP; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):297-8. PubMed ID: 17150935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen species generation through NADH oxidation by pterin derivatives.
    Nonogawa M; Arai T; Endo N; Pack SP; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2008; (52):567-8. PubMed ID: 18776506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical natures of 6-formylpterin nucleoside analogs.
    Nonogawa M; Sommani P; Arai T; Endo N; Pack SP; Kodaki T; Kotake Y; Makino K
    Nucleic Acids Symp Ser (Oxf); 2007; (51):227-8. PubMed ID: 18029669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of 6-formylpterin nucleoside analogs and their ROS generation activities in the presence of NADH in the dark.
    Nonogawa M; Pack SP; Arai T; Endo N; Sommani P; Kodaki T; Kotake Y; Makino K
    Org Biomol Chem; 2007 Oct; 5(20):3314-9. PubMed ID: 17912384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive oxygen species generation through NADH oxidation by 6-formylpterin derivatives in the dark.
    Nonogawa M; Pack SP; Arai T; Endo N; Sommani P; Kodaki T; Makino K
    Biochem Biophys Res Commun; 2007 Feb; 353(4):1105-10. PubMed ID: 17207775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel 6-formylpterin derivatives: chemical synthesis and O2 to ROS conversion activities.
    Nonogawa M; Arai T; Endo N; Pack SP; Kodaki T; Makino K
    Org Biomol Chem; 2006 May; 4(9):1811-6. PubMed ID: 16633574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen bond removal of pterin derivative whose structure is similar to nucleic acid bases.
    Nonogawa M; Arai T; Endo N; Pack SP; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2005; (49):311-2. PubMed ID: 17150758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 6-formylpterin, a xanthine oxidase inhibitor, intracellularly generates reactive oxygen species involved in apoptosis and cell proliferation.
    Arai T; Endo N; Yamashita K; Sasada M; Mori H; Ishii H; Hirota K; Makino K; Fukuda K
    Free Radic Biol Med; 2001 Feb; 30(3):248-59. PubMed ID: 11165871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substituent effects of pterin derivatives on singlet oxygen scavenging activity.
    Mori H; Nishinaka Y; Nonogawa M; Sommani P; Makino K; Yamashita K; Arai T
    Biol Pharm Bull; 2010; 33(5):905-8. PubMed ID: 20460775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Singlet oxygen (O2(1Deltag)) quenching by dihydropterins.
    Dantola ML; Thomas AH; Braun AM; Oliveros E; Lorente C
    J Phys Chem A; 2007 May; 111(20):4280-8. PubMed ID: 17474729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Role of the pterin component in light and dark oxygen consumption by chloroplasts].
    Stakhov LF; Makarov AD
    Biokhimiia; 1981 Sep; 46(9):1646-51. PubMed ID: 7295825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of 2'-deoxyguanosine 5'-monophosphate photoinduced by pterin: type I versus type II mechanism.
    Petroselli G; Dántola ML; Cabrerizo FM; Capparelli AL; Lorente C; Oliveros E; Thomas AH
    J Am Chem Soc; 2008 Mar; 130(10):3001-11. PubMed ID: 18278909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photodynamic effects of a novel pterin derivative on a pancreatic cancer cell line.
    Yamada H; Arai T; Endo N; Yamashita K; Nonogawa M; Makino K; Fukuda K; Sasada M; Uchiyama T
    Biochem Biophys Res Commun; 2005 Aug; 333(3):763-7. PubMed ID: 15964552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The radical scavenger edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) reacts with a pterin derivative and produces a cytotoxic substance that induces intracellular reactive oxygen species generation and cell death.
    Arai T; Nonogawa M; Makino K; Endo N; Mori H; Miyoshi T; Yamashita K; Sasada M; Kakuyama M; Fukuda K
    J Pharmacol Exp Ther; 2008 Feb; 324(2):529-38. PubMed ID: 18029546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex.
    Reipa V; Holden MJ; Vilker VL
    Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosensitization of 2'-deoxyadenosine-5'-monophosphate by pterin.
    Petroselli G; Erra-Balsells R; Cabrerizo FM; Lorente C; Capparelli AL; Braun AM; Oliveros E; Thomas AH
    Org Biomol Chem; 2007 Sep; 5(17):2792-9. PubMed ID: 17700847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quenching of the fluorescence of pterin derivatives by anions.
    Lorente C; Capparelli AL; Thomas AH; Braun AM; Oliveros E
    Photochem Photobiol Sci; 2004 Feb; 3(2):167-73. PubMed ID: 14872232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlorine dioxide oxidation of dihydronicotinamide adenine dinucleotide (NADH).
    Bakhmutova-Albert EV; Margerum DW; Auer JG; Applegate BM
    Inorg Chem; 2008 Mar; 47(6):2205-11. PubMed ID: 18278862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential electron-transfer and proton-transfer pathways in hydride-transfer reactions from dihydronicotinamide adenine dinucleotide analogues to non-heme oxoiron(IV) complexes and p-chloranil. Detection of radical cations of NADH analogues in acid-promoted hydride-transfer reactions.
    Fukuzumi S; Kotani H; Lee YM; Nam W
    J Am Chem Soc; 2008 Nov; 130(45):15134-42. PubMed ID: 18937476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative catalysis in the homodimer subunits of xanthine oxidase.
    Tai LA; Hwang KC
    Biochemistry; 2004 Apr; 43(16):4869-76. PubMed ID: 15096056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.