These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 1715187)

  • 1. The ionic channels formed by cholera toxin in planar bilayer lipid membranes are entirely attributable to its B-subunit.
    Krasilnikov OV; Muratkhodjaev JN; Voronov SE; Yezepchuk YV
    Biochim Biophys Acta; 1991 Aug; 1067(2):166-70. PubMed ID: 1715187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pore-forming properties of proteolytically nicked staphylococcal alpha-toxin: the ion channel in planar lipid bilayer membranes.
    Krasilnikov OV; Merzlyak PG; Yuldasheva LN; Azimova RK; Nogueira RA
    Med Microbiol Immunol; 1997 Jun; 186(1):53-61. PubMed ID: 9255767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diphtheria toxin forms transmembrane channels in planar lipid bilayers.
    Donovan JJ; Simon MI; Draper RK; Montal M
    Proc Natl Acad Sci U S A; 1981 Jan; 78(1):172-6. PubMed ID: 6264431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Channels formed by colicin E1 in planar lipid bilayers are large and exhibit pH-dependent ion selectivity.
    Raymond L; Slatin SL; Finkelstein A
    J Membr Biol; 1985; 84(2):173-81. PubMed ID: 2582133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mode of action of Vibrio cholerae cytolysin. The influences on both erythrocytes and planar lipid bilayers.
    Krasilnikov OV; Muratkhodjaev JN; Zitzer AO
    Biochim Biophys Acta; 1992 Oct; 1111(1):7-16. PubMed ID: 1382601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the channel properties of tetanus toxin in planar lipid bilayers.
    Gambale F; Montal M
    Biophys J; 1988 May; 53(5):771-83. PubMed ID: 2455552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Avian adenovirus induces ion channels in model bilayer lipid membranes.
    Rosenkranz AA; Antonenko YN; Smirnova OA; Yurov GK; Naroditsky BS; Sobolev AS
    Biochem Biophys Res Commun; 1997 Jul; 236(3):750-3. PubMed ID: 9245727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic channels formed by Staphylococcus aureus alpha-toxin: voltage-dependent inhibition by divalent and trivalent cations.
    Menestrina G
    J Membr Biol; 1986; 90(2):177-90. PubMed ID: 2425095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Cation-anion selectivity and conductivity of the channels formed by black widow spider whole venom in lipid bilayer].
    Krasil'nikov OV; Ternovskiĭ VI; Tashmukhamedov BA
    Biofizika; 1983; 28(3):440-4. PubMed ID: 6307397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlations between changes in membrane capacitance induced by changes in ionic environment and the conductance of channels incorporated into bilayer lipid membranes.
    Chanturiya AN; Nikoloshina HV
    J Membr Biol; 1994 Jan; 137(1):71-7. PubMed ID: 7516435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion selectivity of the channels formed by pardaxin, an ionophore, in bilayer membranes.
    Shi YL; Edwards C; Lazarovici P
    Nat Toxins; 1995; 3(3):151-5. PubMed ID: 7544199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-gated anion channel of the electric organ of Narke japonica incorporated into planar bilayers.
    Kanemasa T; Banba K; Kasai M
    J Biochem; 1987 Apr; 101(4):1025-32. PubMed ID: 2440854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of anion-cation selectivity of amphotericin B channels.
    Borisova MP; Brutyan RA; Ermishkin LN
    J Membr Biol; 1986; 90(1):13-20. PubMed ID: 2422383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Activity of toxins produced by Pseudomonas syringae pv. syringae in model and cell membranes].
    Gur'nev FA; Kaulin IuA; Tikhomirova AV; Wangspa R; Takemoto D; Malev VV; Shchagina LV
    Tsitologiia; 2002; 44(3):296-304. PubMed ID: 12094768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The thiazole derivative reduces transmembrane currents via ionic channels formed by alpha-latrotoxin and sea anemone toxin in the bilayer lipid membranes].
    Shaturskiĭ OIa; Romanenko AV
    Ukr Biokhim Zh (1999); 2005; 77(4):51-8. PubMed ID: 16568603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitamin B1 thiazole derivative reduces transmembrane current through ionic channels formed by toxins from black widow spider venom and sea anemone in planar phospholipid membranes.
    Shatursky OY; Volkova TM; Romanenko OV; Himmelreich NH; Grishin EV
    Biochim Biophys Acta; 2007 Feb; 1768(2):207-17. PubMed ID: 17150177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore formation by the Bordetella adenylate cyclase toxin in lipid bilayer membranes: role of voltage and pH.
    Knapp O; Maier E; Masín J; Sebo P; Benz R
    Biochim Biophys Acta; 2008 Jan; 1778(1):260-9. PubMed ID: 17976530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flammutoxin, a cytolysin from the edible mushroom Flammulina velutipes, forms two different types of voltage-gated channels in lipid bilayer membranes.
    Tadjibaeva G; Sabirov R; Tomita T
    Biochim Biophys Acta; 2000 Aug; 1467(2):431-43. PubMed ID: 11030600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colicin N forms voltage- and pH-dependent channels in planar lipid bilayer membranes.
    Wilmsen HU; Pugsley AP; Pattus F
    Eur Biophys J; 1990; 18(3):149-58. PubMed ID: 1694123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Escherichia coli haemolysin forms voltage-dependent ion channels in lipid membranes.
    Menestrina G; Mackman N; Holland IB; Bhakdi S
    Biochim Biophys Acta; 1987 Nov; 905(1):109-17. PubMed ID: 2445378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.