These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 1715187)

  • 41. Structure function relationships in diphtheria toxin channels: II. A residue responsible for the channel's dependence on trans pH.
    Mindell JA; Silverman JA; Collier RJ; Finkelstein A
    J Membr Biol; 1994 Jan; 137(1):29-44. PubMed ID: 7516433
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Staphylococcus aureus alpha-toxin-induced pores: channel-like behavior in lipid bilayers and patch clamped cells.
    Korchev YE; Alder GM; Bakhramov A; Bashford CL; Joomun BS; Sviderskaya EV; Usherwood PN; Pasternak CA
    J Membr Biol; 1995 Jan; 143(2):143-51. PubMed ID: 7537338
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of two general diffusion channels in the outer membrane of pea mitochondria.
    Schmid A; Krömer S; Heldt HW; Benz R
    Biochim Biophys Acta; 1992 Dec; 1112(2):174-80. PubMed ID: 1281000
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Voltage-dependent gating properties of the channel formed by E. coli hemolysin in planar lipid membranes.
    Menestrina G; Ropele M
    Biosci Rep; 1989 Aug; 9(4):465-73. PubMed ID: 2686776
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cation channels from Tetrahymena cilia incorporated into planar lipid bilayers.
    Oosawa Y; Sokabe M
    Am J Physiol; 1985 Jul; 249(1 Pt 1):C177-9. PubMed ID: 2409811
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Channel-forming properties of Steatoda paykulliana spider venom].
    Sokolov IuV; Chanturiia AN; Lishko VK
    Biofizika; 1984; 29(4):620-3. PubMed ID: 6091783
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The geometry of the ionic chànnel lumen formed by alpha-latroinsectotoxin from black widow spider venom in the bilayer lipid membranes.
    Shatursky OY; Volkova TM; Himmelreich NH; Grishin EV
    Biochim Biophys Acta; 2007 Nov; 1768(11):2757-63. PubMed ID: 17764656
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ion channel-like activity of the antimicrobial peptide tritrpticin in planar lipid bilayers.
    Salay LC; Procopio J; Oliveira E; Nakaie CR; Schreier S
    FEBS Lett; 2004 May; 565(1-3):171-5. PubMed ID: 15135074
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Voltage-dependent cationic channels formed by a cytolytic toxin produced by Gardnerella vaginalis.
    Moran O; Zegarra-Moran O; Virginio C; Rottini G
    FEBS Lett; 1991 Jun; 283(2):317-20. PubMed ID: 1710581
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bilayer lipid membranes supported on Teflon filters: a functional environment for ion channels.
    Phung T; Zhang Y; Dunlop J; Dalziel J
    Biosens Bioelectron; 2011 Mar; 26(7):3127-35. PubMed ID: 21211957
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Channel-closing activity of porins from Escherichia coli in bilayer lipid membranes.
    Xu GZ; Shi B; McGroarty EJ; Tien HT
    Biochim Biophys Acta; 1986 Nov; 862(1):57-64. PubMed ID: 2429702
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure-function relationship of the ion channel formed by diphtheria toxin in Vero cell membranes.
    Lanzrein M; Falnes PO; Sand O; Olsnes S
    J Membr Biol; 1997 Mar; 156(2):141-8. PubMed ID: 9075645
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aerolysin of Aeromonas sobria: evidence for formation of ion-permeable channels and comparison with alpha-toxin of Staphylococcus aureus.
    Chakraborty T; Schmid A; Notermans S; Benz R
    Infect Immun; 1990 Jul; 58(7):2127-32. PubMed ID: 1694819
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Large cation-selective pores from rat liver peroxisomal membranes incorporated to planar lipid bilayers.
    Labarca P; Wolff D; Soto U; Necochea C; Leighton F
    J Membr Biol; 1986; 94(3):285-91. PubMed ID: 2435912
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrophysiological evidence for heptameric stoichiometry of ion channels formed by Staphylococcus aureus alpha-toxin in planar lipid bilayers.
    Krasilnikov OV; Merzlyak PG; Yuldasheva LN; Rodrigues CG; Bhakdi S; Valeva A
    Mol Microbiol; 2000 Sep; 37(6):1372-8. PubMed ID: 10998169
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction of Clostridium perfringens iota-toxin with lipid bilayer membranes. Demonstration of channel formation by the activated binding component Ib and channel block by the enzyme component Ia.
    Knapp O; Benz R; Gibert M; Marvaud JC; Popoff MR
    J Biol Chem; 2002 Feb; 277(8):6143-52. PubMed ID: 11741922
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanism of ion transport through the anion-selective channel of the Pseudomonas aeruginosa outer membrane.
    Benz R; Hancock RE
    J Gen Physiol; 1987 Feb; 89(2):275-95. PubMed ID: 2435841
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tetanus toxin channel in phosphatidylserine planar bilayers: conductance states and pH dependence.
    Rauch G; Gambale F; Montal M
    Eur Biophys J; 1990; 18(2):79-83. PubMed ID: 1691089
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anion channel forming activity from the plant pathogenic bacterium Clavibacter michiganense ssp. nebraskense.
    Schürholz T; Wilimzig M; Katsiou E; Eichenlaub R
    J Membr Biol; 1991 Jul; 123(1):1-8. PubMed ID: 1723101
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes.
    Arispe N; Pollard HB; Rojas E
    Proc Natl Acad Sci U S A; 1993 Nov; 90(22):10573-7. PubMed ID: 7504270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.