These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 17151883)
1. Structured population dynamics: continuous size and discontinuous stage structures. Buffoni G; Pasquali S J Math Biol; 2007 Apr; 54(4):555-95. PubMed ID: 17151883 [TBL] [Abstract][Full Text] [Related]
2. Lattice effects observed in chaotic dynamics of experimental populations. Henson SM; Costantino RF; Cushing JM; Desharnais RA; Dennis B; King AA Science; 2001 Oct; 294(5542):602-5. PubMed ID: 11641500 [TBL] [Abstract][Full Text] [Related]
3. Derivation of stochastic partial differential equations for size- and age-structured populations. Allen EJ J Biol Dyn; 2009 Jan; 3(1):73-86. PubMed ID: 22880751 [TBL] [Abstract][Full Text] [Related]
4. Discrete and continuous state population models in a noisy world. Domokos G; Scheuring I J Theor Biol; 2004 Apr; 227(4):535-45. PubMed ID: 15038988 [TBL] [Abstract][Full Text] [Related]
7. Population extinction and quasi-stationary behavior in stochastic density-dependent structured models. Block GL; Allen LJ Bull Math Biol; 2000 Mar; 62(2):199-228. PubMed ID: 10824427 [TBL] [Abstract][Full Text] [Related]
8. Equilibrium solutions for microscopic stochastic systems in population dynamics. Lachowicz M; Ryabukha T Math Biosci Eng; 2013 Jun; 10(3):777-86. PubMed ID: 23906149 [TBL] [Abstract][Full Text] [Related]
9. Random perturbations and lattice effects in chaotic population dynamics. Domokos G; Scheuring I Science; 2002 Sep; 297(5590):2163; discussion 2163. PubMed ID: 12351754 [No Abstract] [Full Text] [Related]
10. Stochastic von Bertalanffy models, with applications to fish recruitment. Lv Q; Pitchford JW J Theor Biol; 2007 Feb; 244(4):640-55. PubMed ID: 17055532 [TBL] [Abstract][Full Text] [Related]
11. Equilibria in structured populations. Cushing JM J Math Biol; 1985; 23(1):15-39. PubMed ID: 4078497 [TBL] [Abstract][Full Text] [Related]
12. A Lyapunov function for piecewise-independent differential equations: stability of the ideal free distribution in two patch environments. Krivan V; Vrkoc I J Math Biol; 2007 Apr; 54(4):465-88. PubMed ID: 17318631 [TBL] [Abstract][Full Text] [Related]
13. The role of seasonality in the dynamics of deer tick populations. Awerbuch-Friedlander T; Levins R; Predescu M Bull Math Biol; 2005 May; 67(3):467-86. PubMed ID: 15820738 [TBL] [Abstract][Full Text] [Related]
14. Individual size variation and population stability in a seasonal environment: a discrete-time model and its calibration using grasshoppers. Filin I; Ovadia O Am Nat; 2007 Nov; 170(5):719-33. PubMed ID: 17926294 [TBL] [Abstract][Full Text] [Related]
15. Integral projection models for finite populations in a stochastic environment. Vindenes Y; Engen S; Saether BE Ecology; 2011 May; 92(5):1146-56. PubMed ID: 21661575 [TBL] [Abstract][Full Text] [Related]
16. A comparison of persistence-time estimation for discrete and continuous stochastic population models that include demographic and environmental variability. Allen EJ; Allen LJ; Schurz H Math Biosci; 2005 Jul; 196(1):14-38. PubMed ID: 15946709 [TBL] [Abstract][Full Text] [Related]
17. Evolution of specialization under non-equilibrium population dynamics. Nurmi T; Parvinen K J Theor Biol; 2013 Mar; 321():63-77. PubMed ID: 23306058 [TBL] [Abstract][Full Text] [Related]
18. [Continuous-discrete models of the dynamics of an isolated population and of 2 competing species]. Nedorezov LV; Nazarov IN Zh Obshch Biol; 2000; 61(1):74-86. PubMed ID: 10732490 [TBL] [Abstract][Full Text] [Related]
19. On linear perturbations of the Ricker model. Braverman E; Kinzebulatov D Math Biosci; 2006 Aug; 202(2):323-39. PubMed ID: 16797042 [TBL] [Abstract][Full Text] [Related]
20. Spread rate for a nonlinear stochastic invasion. Lewis MA J Math Biol; 2000 Nov; 41(5):430-54. PubMed ID: 11151707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]