BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 17152059)

  • 1. A large genomic deletion in the PDHX gene caused by the retrotranspositional insertion of a full-length LINE-1 element.
    Miné M; Chen JM; Brivet M; Desguerre I; Marchant D; de Lonlay P; Bernard A; Férec C; Abitbol M; Ricquier D; Marsac C
    Hum Mutat; 2007 Feb; 28(2):137-42. PubMed ID: 17152059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel gross deletion caused by non-homologous recombination of the PDHX gene in a patient with pyruvate dehydrogenase deficiency.
    Miné M; Brivet M; Schiff M; de Baulny HO; Chuzhanova N; Marsac C
    Mol Genet Metab; 2006; 89(1-2):106-10. PubMed ID: 16843025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A full-length and potentially active LINE element is integrated polymorphically within the IGL locus in a genomically unstable region of chromosome 22.
    Benjes SM; Morris CM
    Hum Genet; 2001 Dec; 109(6):628-37. PubMed ID: 11810275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease.
    Chen JM; Stenson PD; Cooper DN; Férec C
    Hum Genet; 2005 Sep; 117(5):411-27. PubMed ID: 15983781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man.
    Kazazian HH; Wong C; Youssoufian H; Scott AF; Phillips DG; Antonarakis SE
    Nature; 1988 Mar; 332(6160):164-6. PubMed ID: 2831458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirements for polyadenylation at the 3' end of LINE-1 elements.
    Belancio VP; Whelton M; Deininger P
    Gene; 2007 Apr; 390(1-2):98-107. PubMed ID: 17023124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Following the LINEs: an analysis of primate genomic variation at human-specific LINE-1 insertion sites.
    Vincent BJ; Myers JS; Ho HJ; Kilroy GE; Walker JA; Watkins WS; Jorde LB; Batzer MA
    Mol Biol Evol; 2003 Aug; 20(8):1338-48. PubMed ID: 12777507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of L1 retrotransposon insertion on transcript processing, localization and accumulation: lessons from the retinal degeneration 7 mouse and implications for the genomic ecology of L1 elements.
    Chen J; Rattner A; Nathans J
    Hum Mol Genet; 2006 Jul; 15(13):2146-56. PubMed ID: 16723373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel insertion of a rearranged L1 element in exon 44 of the dystrophin gene: further evidence for possible bias in retroposon integration.
    Musova Z; Hedvicakova P; Mohrmann M; Tesarova M; Krepelova A; Zeman J; Sedlacek Z
    Biochem Biophys Res Commun; 2006 Aug; 347(1):145-9. PubMed ID: 16808900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L1 retrotransposition can occur early in human embryonic development.
    van den Hurk JA; Meij IC; Seleme MC; Kano H; Nikopoulos K; Hoefsloot LH; Sistermans EA; de Wijs IJ; Mukhopadhyay A; Plomp AS; de Jong PT; Kazazian HH; Cremers FP
    Hum Mol Genet; 2007 Jul; 16(13):1587-92. PubMed ID: 17483097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alu retrotransposition-mediated deletion.
    Callinan PA; Wang J; Herke SW; Garber RK; Liang P; Batzer MA
    J Mol Biol; 2005 May; 348(4):791-800. PubMed ID: 15843013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new exon created by intronic insertion of a rearranged LINE-1 element as the cause of chronic granulomatous disease.
    Meischl C; Boer M; Ahlin A; Roos D
    Eur J Hum Genet; 2000 Sep; 8(9):697-703. PubMed ID: 10980575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of two Alu insertions in the CFTR gene.
    Chen JM; Masson E; Macek M; Raguénès O; Piskackova T; Fercot B; Fila L; Cooper DN; Audrézet MP; Férec C
    J Cyst Fibros; 2008 Jan; 7(1):37-43. PubMed ID: 17531547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meta-analysis of gross insertions causing human genetic disease: novel mutational mechanisms and the role of replication slippage.
    Chen JM; Chuzhanova N; Stenson PD; Férec C; Cooper DN
    Hum Mutat; 2005 Feb; 25(2):207-21. PubMed ID: 15643617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic alterations upon integration of zebrafish L1 elements revealed by the TANT method.
    Ichiyanagi K; Okada N
    Gene; 2006 Nov; 383():108-16. PubMed ID: 17049188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition.
    Ostertag EM; Kazazian HH
    Genome Res; 2001 Dec; 11(12):2059-65. PubMed ID: 11731496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a mutagenic B1 retrotransposon insertion in the jittery mouse.
    Gilbert N; Bomar JM; Burmeister M; Moran JV
    Hum Mutat; 2004 Jul; 24(1):9-13. PubMed ID: 15221784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 20.7 kb deletion within the factor VIII gene associated with LINE-1 element insertion.
    Van de Water N; Williams R; Ockelford P; Browett P
    Thromb Haemost; 1998 May; 79(5):938-42. PubMed ID: 9609225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA polymerization by the reverse transcriptase of the human L1 retrotransposon on its own template in vitro.
    Piskareva O; Schmatchenko V
    FEBS Lett; 2006 Jan; 580(2):661-8. PubMed ID: 16412437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages.
    Han K; Sen SK; Wang J; Callinan PA; Lee J; Cordaux R; Liang P; Batzer MA
    Nucleic Acids Res; 2005; 33(13):4040-52. PubMed ID: 16034026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.