These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 17152079)
21. Prediction of protein relative solvent accessibility with a two-stage SVM approach. Nguyen MN; Rajapakse JC Proteins; 2005 Apr; 59(1):30-7. PubMed ID: 15696542 [TBL] [Abstract][Full Text] [Related]
22. PocketDepth: a new depth based algorithm for identification of ligand binding sites in proteins. Kalidas Y; Chandra N J Struct Biol; 2008 Jan; 161(1):31-42. PubMed ID: 17949996 [TBL] [Abstract][Full Text] [Related]
23. Identifying protein-protein interaction sites in transient complexes with temperature factor, sequence profile and accessible surface area. Liu R; Jiang W; Zhou Y Amino Acids; 2010 Jan; 38(1):263-70. PubMed ID: 19214704 [TBL] [Abstract][Full Text] [Related]
24. Conservation and prediction of solvent accessibility in protein families. Rost B; Sander C Proteins; 1994 Nov; 20(3):216-26. PubMed ID: 7892171 [TBL] [Abstract][Full Text] [Related]
25. Protein docking using surface matching and supervised machine learning. Bordner AJ; Gorin AA Proteins; 2007 Aug; 68(2):488-502. PubMed ID: 17444516 [TBL] [Abstract][Full Text] [Related]
26. Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks. Fuchs A; Kirschner A; Frishman D Proteins; 2009 Mar; 74(4):857-71. PubMed ID: 18704938 [TBL] [Abstract][Full Text] [Related]
27. Prediction of protein structural class using novel evolutionary collocation-based sequence representation. Chen K; Kurgan LA; Ruan J J Comput Chem; 2008 Jul; 29(10):1596-604. PubMed ID: 18293306 [TBL] [Abstract][Full Text] [Related]
28. A neural network method for identification of RNA-interacting residues in protein. Jeong E; Chung IF; Miyano S Genome Inform; 2004; 15(1):105-16. PubMed ID: 15712114 [TBL] [Abstract][Full Text] [Related]
29. A statistical approach using network structure in the prediction of protein characteristics. Chen PY; Deane CM; Reinert G Bioinformatics; 2007 Sep; 23(17):2314-21. PubMed ID: 17599931 [TBL] [Abstract][Full Text] [Related]
30. Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training. Dor O; Zhou Y Proteins; 2007 Mar; 66(4):838-45. PubMed ID: 17177203 [TBL] [Abstract][Full Text] [Related]
31. Prediction of protein folds: extraction of new features, dimensionality reduction, and fusion of heterogeneous classifiers. Ghanty P; Pal NR IEEE Trans Nanobioscience; 2009 Mar; 8(1):100-10. PubMed ID: 19278932 [TBL] [Abstract][Full Text] [Related]
32. SVM-Cabins: prediction of solvent accessibility using accumulation cutoff set and support vector machine. Wang JY; Lee HM; Ahmad S Proteins; 2007 Jul; 68(1):82-91. PubMed ID: 17436325 [TBL] [Abstract][Full Text] [Related]
33. DNABind: a hybrid algorithm for structure-based prediction of DNA-binding residues by combining machine learning- and template-based approaches. Liu R; Hu J Proteins; 2013 Nov; 81(11):1885-99. PubMed ID: 23737141 [TBL] [Abstract][Full Text] [Related]
34. Real-SPINE: an integrated system of neural networks for real-value prediction of protein structural properties. Dor O; Zhou Y Proteins; 2007 Jul; 68(1):76-81. PubMed ID: 17397056 [TBL] [Abstract][Full Text] [Related]
35. PIER: protein interface recognition for structural proteomics. Kufareva I; Budagyan L; Raush E; Totrov M; Abagyan R Proteins; 2007 May; 67(2):400-17. PubMed ID: 17299750 [TBL] [Abstract][Full Text] [Related]
36. FURSMASA: a new approach to rapid scoring functions that uses a MD-averaged potential energy grid and a solvent-accessible surface area term with parameters GA fit to experimental data. Pearlman DA; Rao BG; Charifson P Proteins; 2008 May; 71(3):1519-38. PubMed ID: 18300249 [TBL] [Abstract][Full Text] [Related]