These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 17152080)

  • 1. Probabilistic alignment detects remote homology in a pair of protein sequences without homologous sequence information.
    Koike R; Kinoshita K; Kidera A
    Proteins; 2007 Feb; 66(3):655-63. PubMed ID: 17152080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SVM-BALSA: remote homology detection based on Bayesian sequence alignment.
    Webb-Robertson BJ; Oehmen C; Matzke M
    Comput Biol Chem; 2005 Dec; 29(6):440-3. PubMed ID: 16290168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of multiple profiles corresponding to a sequence alignment enables effective detection of remote homologues.
    Anand B; Gowri VS; Srinivasan N
    Bioinformatics; 2005 Jun; 21(12):2821-6. PubMed ID: 15817691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homology-based modeling of 3D structures of protein-protein complexes using alignments of modified sequence profiles.
    Kundrotas PJ; Lensink MF; Alexov E
    Int J Biol Macromol; 2008 Aug; 43(2):198-208. PubMed ID: 18572239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence and hydropathy profile analysis of two classes of secondary transporters.
    Lolkema JS; Slotboom DJ
    Mol Membr Biol; 2005; 22(3):177-89. PubMed ID: 16096261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast model-based protein homology detection without alignment.
    Hochreiter S; Heusel M; Obermayer K
    Bioinformatics; 2007 Jul; 23(14):1728-36. PubMed ID: 17488755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filtering remote homologues using predicted structural information.
    Uehara K; Kawabata T; Go N
    Protein Eng Des Sel; 2004 Jul; 17(7):565-70. PubMed ID: 15319470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blast sampling for structural and functional analyses.
    Friedrich A; Ripp R; Garnier N; Bettler E; Deléage G; Poch O; Moulinier L
    BMC Bioinformatics; 2007 Feb; 8():62. PubMed ID: 17319945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SVM-based detection of distant protein structural relationships using pairwise probabilistic suffix trees.
    Oğul H; Mumcuoğlu EU
    Comput Biol Chem; 2006 Aug; 30(4):292-9. PubMed ID: 16880118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STRUCTFAST: protein sequence remote homology detection and alignment using novel dynamic programming and profile-profile scoring.
    Debe DA; Danzer JF; Goddard WA; Poleksic A
    Proteins; 2006 Sep; 64(4):960-7. PubMed ID: 16786595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient recognition of protein fold at low sequence identity by conservative application of Psi-BLAST: validation.
    Stevens FJ
    J Mol Recognit; 2005; 18(2):139-49. PubMed ID: 15558595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of a rigorous transitive profile based search method to detect remotely similar proteins.
    Sandhya S; Chakrabarti S; Abhinandan KR; Sowdhamini R; Srinivasan N
    J Biomol Struct Dyn; 2005 Dec; 23(3):283-98. PubMed ID: 16218755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incremental window-based protein sequence alignment algorithms.
    Rangwala H; Karypis G
    Bioinformatics; 2007 Jan; 23(2):e17-23. PubMed ID: 17237087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of PSI-BLAST alignment accuracy in comparison to structural alignments.
    Friedberg I; Kaplan T; Margalit H
    Protein Sci; 2000 Nov; 9(11):2278-84. PubMed ID: 11152139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote homology detection of integral membrane proteins using conserved sequence features.
    Bernsel A; Viklund H; Elofsson A
    Proteins; 2008 May; 71(3):1387-99. PubMed ID: 18076048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods of remote homology detection can be combined to increase coverage by 10% in the midnight zone.
    Reid AJ; Yeats C; Orengo CA
    Bioinformatics; 2007 Sep; 23(18):2353-60. PubMed ID: 17709341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A feature vector integration approach for a generalized support vector machine pairwise homology algorithm.
    Webb-Robertson BJ; Oehmen CS; Shah AR
    Comput Biol Chem; 2008 Dec; 32(6):458-61. PubMed ID: 18722814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of related proteins on family, superfamily and fold level.
    Lindahl E; Elofsson A
    J Mol Biol; 2000 Jan; 295(3):613-25. PubMed ID: 10623551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SVM-HUSTLE--an iterative semi-supervised machine learning approach for pairwise protein remote homology detection.
    Shah AR; Oehmen CS; Webb-Robertson BJ
    Bioinformatics; 2008 Mar; 24(6):783-90. PubMed ID: 18245127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information.
    Mooney C; Pollastri G
    Proteins; 2009 Oct; 77(1):181-90. PubMed ID: 19422056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.