These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 17152080)

  • 41. Sensitivity and selectivity in protein similarity searches: a comparison of Smith-Waterman in hardware to BLAST and FASTA.
    Shpaer EG; Robinson M; Yee D; Candlin JD; Mines R; Hunkapiller T
    Genomics; 1996 Dec; 38(2):179-91. PubMed ID: 8954800
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessment of the probabilities for evolutionary structural changes in protein folds.
    Viksna J; Gilbert D
    Bioinformatics; 2007 Apr; 23(7):832-41. PubMed ID: 17282999
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Strategies for the effective identification of remotely related sequences in multiple PSSM search approach.
    Gowri VS; Tina KG; Krishnadev O; Srinivasan N
    Proteins; 2007 Jun; 67(4):789-94. PubMed ID: 17380509
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Using ancestral sequences to uncover potential gene homologues.
    Collins LJ; Poole AM; Penny D
    Appl Bioinformatics; 2003; 2(3 Suppl):S85-95. PubMed ID: 15130821
    [TBL] [Abstract][Full Text] [Related]  

  • 45. HMM-ModE--improved classification using profile hidden Markov models by optimising the discrimination threshold and modifying emission probabilities with negative training sequences.
    Srivastava PK; Desai DK; Nandi S; Lynn AM
    BMC Bioinformatics; 2007 Mar; 8():104. PubMed ID: 17389042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proteins of the same fold and unrelated sequences have similar amino acid composition.
    Ofran Y; Margalit H
    Proteins; 2006 Jul; 64(1):275-9. PubMed ID: 16565950
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A discriminative method for remote homology detection based on n-peptide compositions with reduced amino acid alphabets.
    Oğul H; Mumcuoğlu EU
    Biosystems; 2007 Jan; 87(1):75-81. PubMed ID: 16753255
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A sequence sub-sampling algorithm increases the power to detect distant homologues.
    Johnston CR; Shields DC
    Nucleic Acids Res; 2005; 33(12):3772-8. PubMed ID: 16006623
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Remote homology detection using a kernel method that combines sequence and secondary-structure similarity scores.
    Wieser D; Niranjan M
    In Silico Biol; 2009; 9(3):89-103. PubMed ID: 19795568
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exploring an alignment free approach for protein classification and structural class prediction.
    Deschavanne P; Tufféry P
    Biochimie; 2008 Apr; 90(4):615-25. PubMed ID: 18067866
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On homology searches by protein Blast and the characterization of the age of genes.
    Albà MM; Castresana J
    BMC Evol Biol; 2007 Apr; 7():53. PubMed ID: 17408474
    [TBL] [Abstract][Full Text] [Related]  

  • 52. QSCOP-BLAST--fast retrieval of quantified structural information for protein sequences of unknown structure.
    Suhrer SJ; Gruber M; Sippl MJ
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W411-5. PubMed ID: 17478501
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Revealing remote protein homology with sequence similarity and a modularity-based approach.
    Mei J; Yang X; Zhou W
    Theor Biol Forum; 2011; 104(1):57-68. PubMed ID: 22220355
    [TBL] [Abstract][Full Text] [Related]  

  • 55. De novo identification of highly diverged protein repeats by probabilistic consistency.
    Biegert A; Söding J
    Bioinformatics; 2008 Mar; 24(6):807-14. PubMed ID: 18245125
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Profile-profile methods provide improved fold-recognition: a study of different profile-profile alignment methods.
    Ohlson T; Wallner B; Elofsson A
    Proteins; 2004 Oct; 57(1):188-97. PubMed ID: 15326603
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamic sequence databank searching with templates and multiple alignment.
    Taylor WR
    J Mol Biol; 1998 Jul; 280(3):375-406. PubMed ID: 9665844
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sensitive detection of sequence similarity using combinatorial pattern discovery: a challenging study of two distantly related protein families.
    Darzentas N; Rigoutsos I; Ouzounis CA
    Proteins; 2005 Dec; 61(4):926-37. PubMed ID: 16224785
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A new generation of homology search tools based on probabilistic inference.
    Eddy SR
    Genome Inform; 2009 Oct; 23(1):205-11. PubMed ID: 20180275
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Homology induction: the use of machine learning to improve sequence similarity searches.
    Karwath A; King RD
    BMC Bioinformatics; 2002 Apr; 3():11. PubMed ID: 11972320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.