These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 17152442)

  • 1. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs.
    Lin Z; Zhang C; Wu W; Gao X
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 2):2610-4. PubMed ID: 17152442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs.
    Lin Z; Zhang C; Wu W; Gao X
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 2):1172-6. PubMed ID: 17549911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SSVEP topographic scalp maps by canonical correlation analysis.
    Bin G; Lin Z; Gao X; Hong B; Gao S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3759-62. PubMed ID: 19163529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components.
    Müller-Putz GR; Scherer R; Brauneis C; Pfurtscheller G
    J Neural Eng; 2005 Dec; 2(4):123-30. PubMed ID: 16317236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periodic component analysis as a spatial filter for SSVEP-based brain-computer interface.
    Kiran Kumar GR; Ramasubba Reddy M
    J Neurosci Methods; 2018 Sep; 307():164-174. PubMed ID: 29890196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA.
    Rabiul Islam M; Khademul Islam Molla M; Nakanishi M; Tanaka T
    J Neural Eng; 2017 Apr; 14(2):026007. PubMed ID: 28071599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incremental SSVEP analysis for BCI implementation.
    Torres Müller SM; Freire Bastos-Filho T; Sarcinelli-Filho M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3333-6. PubMed ID: 21097229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing performances of SSVEP-based brain-computer interfaces via exploiting inter-subject information.
    Yuan P; Chen X; Wang Y; Gao X; Gao S
    J Neural Eng; 2015 Aug; 12(4):046006. PubMed ID: 26028259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    Int J Neural Syst; 2014 Jun; 24(4):1450013. PubMed ID: 24694168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces.
    Cao L; Ju Z; Li J; Jian R; Jiang C
    J Neurosci Methods; 2015 Sep; 253():10-7. PubMed ID: 26014663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining canonical correlation analysis and infinite reference for frequency recognition of steady-state visual evoked potential recordings: a comparison with periodogram method.
    Tian Y; Li F; Xu P; Yuan Z; Zhao D; Zhang H
    Biomed Mater Eng; 2014; 24(6):2901-8. PubMed ID: 25226996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L1-regularized Multiway canonical correlation analysis for SSVEP-based BCI.
    Zhang Y; Zhou G; Jin J; Wang M; Wang X; Cichocki A
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):887-96. PubMed ID: 24122565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-command SSVEP-based BCI system via single flickering frequency half-field stimulation pattern.
    Punsawad Y; Wongsawat Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1101-4. PubMed ID: 22254506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new multivariate empirical mode decomposition method for improving the performance of SSVEP-based brain-computer interface.
    Chen YF; Atal K; Xie SQ; Liu Q
    J Neural Eng; 2017 Aug; 14(4):046028. PubMed ID: 28357991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SSVEP recognition using common feature analysis in brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Apr; 244():8-15. PubMed ID: 24727656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discriminative Feature Extraction via Multivariate Linear Regression for SSVEP-Based BCI.
    Wang H; Zhang Y; Waytowich NR; Krusienski DJ; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):532-41. PubMed ID: 26812728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the classification accuracy of steady-state visual evoked potential-based brain-computer interfaces using phase constrained canonical correlation analysis.
    Pan J; Gao X; Duan F; Yan Z; Gao S
    J Neural Eng; 2011 Jun; 8(3):036027. PubMed ID: 21566275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A half-field stimulation pattern for SSVEP-based brain-computer interface.
    Yan Z; Gao X; Bin G; Hong B; Gao S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6461-4. PubMed ID: 19964433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraction of SSVEP signals of a capacitive EEG helmet for human machine interface.
    Oehler M; Neumann P; Becker M; Curio G; Schilling M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4495-8. PubMed ID: 19163714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.