BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 17153200)

  • 1. Applicability of the single equivalent moving dipole model in an infinite homogeneous medium to identify cardiac electrical sources: a computer simulation study in a realistic anatomic geometry torso model.
    Fukuoka Y; Oostendorp TF; Sherman DA; Armoundas AA
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2436-44. PubMed ID: 17153200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of a single equivalent moving dipole model in a realistic anatomic geometry torso model.
    Fukuoka Y; Armoundas AA; Oostendorp TF; Cohen RJ
    Comput Cardiol; 2000; 27():439-42. PubMed ID: 14632014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical accuracy of a moving equivalent dipole method to identify sites of origin of cardiac electrical activation.
    Armoundas AA; Feldman AB; Mukkamala R; He B; Mullen TJ; Belk PA; Lee YZ; Cohen RJ
    IEEE Trans Biomed Eng; 2003 Dec; 50(12):1360-70. PubMed ID: 14656065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transfer matrix for epicardial potential in a piece-wise homogeneous thorax model: the boundary element formulation.
    Stenroos M
    Phys Med Biol; 2009 Sep; 54(18):5443-55. PubMed ID: 19700818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for guiding ablation catheters to arrhythmogenic sites using body surface electrocardiographic signals.
    Barley ME; Armoundas AA; Cohen RJ
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):810-9. PubMed ID: 19272900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of the site of origin of reentrant arrhythmia from body surface potential maps: a model study.
    Liu C; Li G; He B
    Phys Med Biol; 2005 Apr; 50(7):1421-32. PubMed ID: 15798333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrected body surface potential mapping.
    Krenzke G; Kindt C; Hetzer R
    Biomed Tech (Berl); 2007 Feb; 52(1):37-42. PubMed ID: 17313332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of cardiac bidomain parameters from extracellular measurement: two dimensional study.
    Sadleir R; Henriquez C
    Ann Biomed Eng; 2006 Aug; 34(8):1289-303. PubMed ID: 16804743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of torso impedance on epicardial and body surface potentials: a modeling study.
    Buist ML; Pullan AJ
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):816-24. PubMed ID: 12848349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The inverse problem utilizing the boundary element method for a nonstandard female torso.
    Jamison C; Navarro C; Turner C; Shannon J; Anderson J; Adgey J
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):876-83. PubMed ID: 21095854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A spline Laplacian ECG estimator in a realistic geometry volume conductor.
    He B; Li G; Lian J
    IEEE Trans Biomed Eng; 2002 Feb; 49(2):110-7. PubMed ID: 12066878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single equivalent moving dipole model: an efficient approach for localizing sites of origin of ventricular electrical activation.
    Armoundas AA; Feldman AB; Mukkamala R; Cohen RJ
    Ann Biomed Eng; 2003 May; 31(5):564-76. PubMed ID: 12757200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive finding of local repolarization changes in the heart using dipole models and simplified torso geometry.
    Tysler M; Svehlikova J
    J Electrocardiol; 2013; 46(4):284-8. PubMed ID: 23628317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart.
    Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved performance of bayesian solutions for inverse electrocardiography using multiple information sources.
    Serinagaoglu Y; Brooks DH; MacLeod RS
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):2024-34. PubMed ID: 17019867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional cardiac electrical imaging from intracavity recordings.
    He B; Liu C; Zhang Y
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1454-60. PubMed ID: 17694866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Truncated total least squares: a new regularization method for the solution of ECG inverse problems.
    Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1327-35. PubMed ID: 18390323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vectorcardiographic lead systems for the characterization of atrial fibrillation.
    van Oosterom A; Ihara Z; Jacquemet V; Hoekema R
    J Electrocardiol; 2007 Oct; 40(4):343.e1-11. PubMed ID: 17027837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volume conductor effects involved in the genesis of the P wave.
    van Dam PM; van Oosterom A
    Europace; 2005 Sep; 7 Suppl 2():30-8. PubMed ID: 16102501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The single equivalent moving dipole model does not require spatial anatomical information to determine cardiac sources of activation.
    Sohn K; Lv W; Lee K; Galea AM; Hirschman GB; Hayward AM; Cohen RJ; Armoundas AA
    IEEE J Biomed Health Inform; 2014 Jan; 18(1):222-30. PubMed ID: 24403420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.