These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 17154011)

  • 1. Thermodynamic factors in partitioning and rejection of organic compounds by polyamide composite membranes.
    Ben-David A; Oren Y; Freger V
    Environ Sci Technol; 2006 Nov; 40(22):7023-8. PubMed ID: 17154011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced partitioning and transport of phenolic micropollutants within polyamide composite membranes.
    Drazevic E; Bason S; Kosutic K; Freger V
    Environ Sci Technol; 2012 Mar; 46(6):3377-83. PubMed ID: 22260225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Feed Water pH on the Partitioning of Alkali Metal Salts from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes.
    Wang J; Armstrong MD; Grzebyk K; Vickers R; Coronell O
    Environ Sci Technol; 2021 Mar; 55(5):3250-3259. PubMed ID: 33600153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does hindered transport theory apply to desalination membranes?
    Dražević E; Košutić K; Kolev V; Freger V
    Environ Sci Technol; 2014 Oct; 48(19):11471-8. PubMed ID: 25137614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relating rejection of trace organic contaminants to membrane properties in forward osmosis: measurements, modelling and implications.
    Xie M; Nghiem LD; Price WE; Elimelech M
    Water Res; 2014 Feb; 49():265-74. PubMed ID: 24345822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of Organics within Hydrated Selective Layer of Reverse Osmosis Desalination Membrane: A Combined Experimental and Computational Study.
    Ghoufi A; Dražević E; Szymczyk A
    Environ Sci Technol; 2017 Mar; 51(5):2714-2719. PubMed ID: 28169536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permeability and selectivity of reverse osmosis membranes: correlation to swelling revisited.
    Dražević E; Košutić K; Freger V
    Water Res; 2014 Feb; 49():444-52. PubMed ID: 24216230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis.
    Xie M; Nghiem LD; Price WE; Elimelech M
    Water Res; 2012 May; 46(8):2683-92. PubMed ID: 22402269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced flux performance of polyamide composite membranes prepared via interfacial polymerization assisted with ethyl formate.
    Liu Z; Zhu G; Wei Y; Zhang D; Jiang L; Wang H; Gao C
    Water Sci Technol; 2017 Oct; 76(7-8):1884-1894. PubMed ID: 28991803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rejection of trace organic compounds by high-pressure membranes.
    Kim TU; Amy G; Drewes JE
    Water Sci Technol; 2005; 51(6-7):335-44. PubMed ID: 16003994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of solute-membrane affinity on rejection of uncharged organic solutes by nanofiltration membranes.
    Verliefde AR; Cornelissen ER; Heijman SG; Hoek EM; Amy GL; Van der Bruggen B; Van Dijkt JC
    Environ Sci Technol; 2009 Apr; 43(7):2400-6. PubMed ID: 19452893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamide nanofiltration membranes to remove aniline in aqueous solutions.
    Hidalgo AM; León G; Gómez M; Murcia MD; Bernal MD; Ortega S
    Environ Technol; 2014; 35(9-12):1175-81. PubMed ID: 24701913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes.
    Liu YL; Wang XM; Yang HW; Xie YF
    Chemosphere; 2018 Jun; 200():36-47. PubMed ID: 29471167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring Polyamide Rejection Layer with Aqueous Carbonate Chemistry for Enhanced Membrane Separation: Mechanistic Insights, Chemistry-Structure-Property Relationship, and Environmental Implications.
    Peng LE; Yao Z; Liu X; Deng B; Guo H; Tang CY
    Environ Sci Technol; 2019 Aug; 53(16):9764-9770. PubMed ID: 31355642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partitioning of Alkali Metal Salts and Boric Acid from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes.
    Wang J; Kingsbury RS; Perry LA; Coronell O
    Environ Sci Technol; 2017 Feb; 51(4):2295-2303. PubMed ID: 28084076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of organic contaminants by RO and NF membranes.
    Yoon Y; Lueptow RM
    J Memb Sci; 2005 Sep; 261(1-2):76-86. PubMed ID: 16134262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of reverse osmosis membrane by sodium hypochlorite and alcohols for enhanced performance using the swelling-fastening effect.
    Xie L; He X; Liu Y; Cao C; Zhang W
    Chemosphere; 2022 Apr; 292():133444. PubMed ID: 34973249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hypochlorous acid exposure on the rejection of salt, polyethylene glycols, boron and arsenic(V) by nanofiltration and reverse osmosis membranes.
    Do VT; Tang CY; Reinhard M; Leckie JO
    Water Res; 2012 Oct; 46(16):5217-23. PubMed ID: 22818949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic Insights into the Role of Polydopamine Interlayer toward Improved Separation Performance of Polyamide Nanofiltration Membranes.
    Yang Z; Wang F; Guo H; Peng LE; Ma XH; Song XX; Wang Z; Tang CY
    Environ Sci Technol; 2020 Sep; 54(18):11611-11621. PubMed ID: 32786553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeability of uncharged organic molecules in reverse osmosis desalination membranes.
    Dražević E; Košutić K; Svalina M; Catalano J
    Water Res; 2017 Jun; 116():13-22. PubMed ID: 28292676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.