These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 17154017)

  • 1. The contemporary anthropogenic chromium cycle.
    Johnson J; Schewel L; Graedel TE
    Environ Sci Technol; 2006 Nov; 40(22):7060-9. PubMed ID: 17154017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forging the anthropogenic iron cycle.
    Wang T; Müller DB; Graedel TE
    Environ Sci Technol; 2007 Jul; 41(14):5120-9. PubMed ID: 17711233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthropogenic nickel cycle: insights into use, trade, and recycling.
    Reck BK; Müller DB; Rostkowski K; Graedel TE
    Environ Sci Technol; 2008 May; 42(9):3394-400. PubMed ID: 18522124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the Global Anthropogenic Chromium Cycle: Implications for Resource Efficiency and Potential Supply Risk.
    Gao Z; Geng Y; Xiao S; Zhuang M
    Environ Sci Technol; 2022 Aug; 56(15):10904-10915. PubMed ID: 35822514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particles, sweat, and tears: a comparative study on bioaccessibility of ferrochromium alloy and stainless steel particles, the pure metals and their metal oxides, in simulated skin and eye contact.
    Hedberg Y; Midander K; Wallinder IO
    Integr Environ Assess Manag; 2010 Jul; 6(3):456-68. PubMed ID: 20821707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Losses to the environment from the multilevel cycle of anthropogenic lead.
    Mao JS; Cao J; Graedel TE
    Environ Pollut; 2009 Oct; 157(10):2670-7. PubMed ID: 19473737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contemporary anthropogenic silver cycle: a multilevel analysis.
    Johnson J; Jirikowic J; Bertram M; van Beers D; Gordon RB; Henderson K; Klee RJ; Lanzano T; Lifset R; Oetjen L; Graedel TE
    Environ Sci Technol; 2005 Jun; 39(12):4655-65. PubMed ID: 16047806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multilevel cycle of anthropogenic copper.
    Graedel TE; van Beers D; Bertram M; Fuse K; Gordon RB; Gritsinin A; Kapur A; Klee RJ; Lifset RJ; Memon L; Rechberger H; Spatari S; Vexler D
    Environ Sci Technol; 2004 Feb; 38(4):1242-52. PubMed ID: 14998044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromium in the environment of Finland.
    Mukherjee AB
    Sci Total Environ; 1998 Jun; 217(1-2):9-19. PubMed ID: 9695169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review.
    Dhal B; Thatoi HN; Das NN; Pandey BD
    J Hazard Mater; 2013 Apr; 250-251():272-91. PubMed ID: 23467183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking the metal of the goblins: cobalt's cycle of use.
    Harper EM; Kavlak G; Graedel TE
    Environ Sci Technol; 2012 Jan; 46(2):1079-86. PubMed ID: 22142288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying Recycling and Losses of Cr and Ni in Steel Throughout Multiple Life Cycles Using MaTrace-Alloy.
    Nakamura S; Kondo Y; Nakajima K; Ohno H; Pauliuk S
    Environ Sci Technol; 2017 Sep; 51(17):9469-9476. PubMed ID: 28806506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Common occurrence of a positive δ53Cr shift in Central European waters contaminated by geogenic/industrial chromium relative to source values.
    Novak M; Chrastny V; Cadkova E; Farkas J; Bullen TD; Tylcer J; Szurmanova Z; Cron M; Prechova E; Curik J; Stepanova M; Pasava J; Erbanova L; Houskova M; Puncochar K; Hellerich LA
    Environ Sci Technol; 2014 Jun; 48(11):6089-96. PubMed ID: 24779992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hexavalent chromium removal by ferrochromium slag.
    Erdem M; Altundoğan HS; Turan MD; Tümen F
    J Hazard Mater; 2005 Nov; 126(1-3):176-82. PubMed ID: 16098660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. International food trade reduces environmental effects of nitrogen pollution in China.
    Shi Y; Wu S; Zhou S; Wang C; Chen H
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):17370-9. PubMed ID: 27230140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity assessment and geochemical model of chromium leaching from AOD slag.
    Liu B; Li J; Zeng Y; Wang Z
    Chemosphere; 2016 Feb; 144():2052-7. PubMed ID: 26583286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Economic sources and spatial distribution of airborne chromium risks in the U.S.
    Rehr AP; Small MJ; Matthews HS; Hendrickson CT
    Environ Sci Technol; 2010 Mar; 44(6):2131-7. PubMed ID: 20170160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.
    Jambeck J; Weitz K; Solo-Gabriele H; Townsend T; Thorneloe S
    Waste Manag; 2007; 27(8):S21-8. PubMed ID: 17416510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioaccessibility studies of ferro-chromium alloy particles for a simulated inhalation scenario: a comparative study with the pure metals and stainless steel.
    Midander K; de Frutos A; Hedberg Y; Darrie G; Wallinder IO
    Integr Environ Assess Manag; 2010 Jul; 6(3):441-55. PubMed ID: 20821706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atmospheric deposition of V, Cr, and Ni since the late glacial: effects of climatic cycles, human impacts, and comparison with crustal abundances.
    Krachler M; Mohl C; Emons H; Shotyk W
    Environ Sci Technol; 2003 Jun; 37(12):2658-67. PubMed ID: 12854702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.