These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 17154158)

  • 1. Contractile three-dimensional bioengineered heart muscle for myocardial regeneration.
    Huang YC; Khait L; Birla RK
    J Biomed Mater Res A; 2007 Mar; 80(3):719-31. PubMed ID: 17154158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force characteristics of in vivo tissue-engineered myocardial constructs using varying cell seeding densities.
    Birla R; Dhawan V; Huang YC; Lytle I; Tiranathanagul K; Brown D
    Artif Organs; 2008 Sep; 32(9):684-91. PubMed ID: 18684210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo conditioning of tissue-engineered heart muscle improves contractile performance.
    Birla RK; Borschel GH; Dennis RG
    Artif Organs; 2005 Nov; 29(11):866-75. PubMed ID: 16266299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating the functional performance of bioengineered heart muscle using growth factor stimulation.
    Huang YC; Khait L; Birla RK
    Ann Biomed Eng; 2008 Aug; 36(8):1372-82. PubMed ID: 18500554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a microperfusion system for the culture of bioengineered heart muscle.
    Hecker L; Khait L; Radnoti D; Birla R
    ASAIO J; 2008; 54(3):284-94. PubMed ID: 18496279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle.
    Naito H; Melnychenko I; Didié M; Schneiderbanger K; Schubert P; Rosenkranz S; Eschenhagen T; Zimmermann WH
    Circulation; 2006 Jul; 114(1 Suppl):I72-8. PubMed ID: 16820649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell sheet engineering for heart tissue repair.
    Masuda S; Shimizu T; Yamato M; Okano T
    Adv Drug Deliv Rev; 2008 Jan; 60(2):277-85. PubMed ID: 18006178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. S100A1 gene transfer: a strategy to strengthen engineered cardiac grafts.
    Remppis A; Pleger ST; Most P; Lindenkamp J; Ehlermann P; Schweda C; Löffler E; Weichenhan D; Zimmermann W; Eschenhagen T; Koch WJ; Katus HA
    J Gene Med; 2004 Apr; 6(4):387-94. PubMed ID: 15079813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac cells implanted into a cylindrical, vascularized chamber in vivo: pressure generation and morphology.
    Birla RK; Dhawan V; Dow DE; Huang YC; Brown DL
    Biotechnol Lett; 2009 Feb; 31(2):191-201. PubMed ID: 18854950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac tissue engineering in an in vivo vascularized chamber.
    Morritt AN; Bortolotto SK; Dilley RJ; Han X; Kompa AR; McCombe D; Wright CE; Itescu S; Angus JA; Morrison WA
    Circulation; 2007 Jan; 115(3):353-60. PubMed ID: 17200440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts.
    Zimmermann WH; Melnychenko I; Wasmeier G; Didié M; Naito H; Nixdorff U; Hess A; Budinsky L; Brune K; Michaelis B; Dhein S; Schwoerer A; Ehmke H; Eschenhagen T
    Nat Med; 2006 Apr; 12(4):452-8. PubMed ID: 16582915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Experimental study of cardiac muscle tissue engineering in bioreactor].
    Liu X; Wang CY; Guo XM; OuYang WQ
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2003 Feb; 25(1):7-12. PubMed ID: 12905598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle.
    Birla RK; Huang YC; Dennis RG
    Tissue Eng; 2007 Sep; 13(9):2239-48. PubMed ID: 17590151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering.
    LaNasa SM; Bryant SJ
    Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional and developmental properties of human embryonic stem cells-derived cardiomyocytes.
    Binah O; Dolnikov K; Sadan O; Shilkrut M; Zeevi-Levin N; Amit M; Danon A; Itskovitz-Eldor J
    J Electrocardiol; 2007; 40(6 Suppl):S192-6. PubMed ID: 17993321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel bench-top perfusion system improves functional performance of bioengineered heart muscle.
    Hecker L; Khait L; Radnoti D; Birla R
    J Biosci Bioeng; 2009 Feb; 107(2):183-90. PubMed ID: 19217558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts.
    Sekine H; Shimizu T; Hobo K; Sekiya S; Yang J; Yamato M; Kurosawa H; Kobayashi E; Okano T
    Circulation; 2008 Sep; 118(14 Suppl):S145-52. PubMed ID: 18824746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes.
    Zimmermann WH; Fink C; Kralisch D; Remmers U; Weil J; Eschenhagen T
    Biotechnol Bioeng; 2000 Apr; 68(1):106-14. PubMed ID: 10699878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methodology for the formation of functional, cell-based cardiac pressure generation constructs in vitro.
    Birla RK; Dow DE; Huang YC; Migneco F; Khait L; Borschel GH; Dhawan V; Brown DL
    In Vitro Cell Dev Biol Anim; 2008; 44(8-9):340-50. PubMed ID: 18493826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.