These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 17154244)

  • 1. Comparison of wind tunnel and field experiments to measure potential deposition of fenpropimorph following volatilisation from treated crops.
    Hassink J; Platz K; Stadler R; Zangmeister W; Fent G; Möndel M; Kubiak R
    Pest Manag Sci; 2007 Feb; 63(2):171-9. PubMed ID: 17154244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measured and computed volatilisation of the fungicide fenpropimorph from a sugar beet crop.
    Leistra M; Smelt JH; van den Berg F
    Pest Manag Sci; 2005 Feb; 61(2):151-8. PubMed ID: 15619709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation on downwind short-range transport of pesticides after application in agricultural crops.
    Siebers J; Binner R; Wittich KP
    Chemosphere; 2003 May; 51(5):397-407. PubMed ID: 12598005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volatilization of the pesticides chlorpyrifos and fenpropimorph from a potato crop.
    Leistra M; Smelt JH; Weststrate JH; van den Berg F; Aalderink R
    Environ Sci Technol; 2006 Jan; 40(1):96-102. PubMed ID: 16433338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drift studies--comparison of field and wind tunnel experiments.
    Stadler R; Regenauer W
    Commun Agric Appl Biol Sci; 2005; 70(4):971-3. PubMed ID: 16628944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of adjuvants on the dissipation of fenpropimorph, pyrimethanil, chlorpyrifos and lindane on the solid/gas interface.
    Houbraken M; Senaeve D; Fevery D; Spanoghe P
    Chemosphere; 2015 Nov; 138():357-63. PubMed ID: 26133697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a novel wind tunnel for the measurement of the kinetics of odour emissions from piggery effluent.
    Sohn JH; Smith R; Yoong E; Hudson N; Kim TI
    Water Sci Technol; 2004; 50(4):49-55. PubMed ID: 15484742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing flow-through air samplers for use in near-field vapour drift studies by measuring pyrimethanil in air after spraying.
    Geoghegan TS; Hageman KJ; Hewitt AJ
    Environ Sci Process Impacts; 2014 Mar; 16(3):422-32. PubMed ID: 24365971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spray drift as affected by meteorological conditions.
    Nuyttens D; Sonck B; de Schampheleire M; Steurbaut W; Baetens K; Verboven P; Nicolaï B; Ramon H
    Commun Agric Appl Biol Sci; 2005; 70(4):947-59. PubMed ID: 16628942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of a gradual forest edge on patterns of wind speed, turbulence and deposition: a wind tunnel study.
    Wuyts K; Cornelis WM; Gabriels D; Verheyen K
    Commun Agric Appl Biol Sci; 2007; 72(1):335-9. PubMed ID: 18018913
    [No Abstract]   [Full Text] [Related]  

  • 11. Buffer zones for reducing pesticide drift to ditches and risks to aquatic organisms.
    de Snoo GR; de Wit PJ
    Ecotoxicol Environ Saf; 1998 Sep; 41(1):112-8. PubMed ID: 9756699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pesticide volatilization from plants: improvement of the PEC model PELMO based on a boundary-layer concept.
    Wolters A; Leistra M; Linnemann V; Klein M; Schäffer A; Vereecken H
    Environ Sci Technol; 2004 May; 38(10):2885-93. PubMed ID: 15212264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of collectors of airborne spray drift. Experiments in a wind tunnel and field measurements.
    Arvidsson T; Bergström L; Kreuger J
    Pest Manag Sci; 2011 Jun; 67(6):725-33. PubMed ID: 21445941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigations into the source of two fungicides measured in the air for 24 hours following application to a cereal crop.
    Ellis MC; Lane AG; O'Sullivan CM; Miller PC
    Commun Agric Appl Biol Sci; 2009; 74(1):37-46. PubMed ID: 20218509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volatilisation of crop protection chemicals from crop and soil surfaces under controlled conditions--prediction of volatile losses from physico-chemical properties.
    Guth JA; Reischmann FJ; Allen R; Arnold D; Hassink J; Leake CR; Skidmore MW; Reeves GL
    Chemosphere; 2004 Nov; 57(8):871-87. PubMed ID: 15488578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volatilisation of triallate as affected by soil texture and air velocity.
    Atienza J; Tabernero MT; Alvarez-Benedí J; Sanz M
    Chemosphere; 2001 Jan; 42(3):257-61. PubMed ID: 11100925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct and indirect drift assessment means. Part 4: a comparative study.
    Nuyttens D; Baetens K; De Schampheleire M; Sonck B
    Commun Agric Appl Biol Sci; 2008; 73(4):769-74. PubMed ID: 19226827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Winds of change, developing a non-target plant bioassay employing field-based pesticide drift exposure: A case study with atrazine.
    Brain R; Goodwin G; Abi-Akar F; Lee B; Rodgers C; Flatt B; Lynn A; Kruger G; Perkins D
    Sci Total Environ; 2019 Aug; 678():239-252. PubMed ID: 31075591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A note on elevated total gaseous mercury concentrations downwind from an agriculture field during tilling.
    Bash JO; Miller DR
    Sci Total Environ; 2007 Dec; 388(1-3):379-88. PubMed ID: 17707885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.